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Review article

 Human breast milk (HBM) is essential for the infant’s growth 
and development right after birth and is an irreplaceable source 
of nutrition for early human survival. Various infant formulas 
have many similarities to HBM in many components, but there 
is no perfect substitute for HBM. Recently, various breast milk 
components and their roles have been studied according to 
the development of various analysis techniques. As is already 
well known, HBM contains about 87%–88% water, and 124-
g/L solid components as macronutrients, including about 7% 
(60–70 g/L) carbohydrates, 1% (8–10 g/L) protein, and 3.8% 
(35–40 g/L) fat. The composition may vary depending on the 
environmental factors, including maternal diet. Colostrum 
is low in fat but high in protein and relatively rich in immune-
protective components. Although HBM contains enough 
vitamins to ensure normal growth of the infant, vitamins D 
and K may be insufficient, and the infant may require their 
supplementation. Growth factors in HBM also serve as various 
bioactive proteins and peptides on the intestinal tract, vascula-
ture, nervous system, and endocrine system. In the past, HBM 
of a healthy mother was thought to be sterile. However, se-
veral subsequent studies have confirmed the presence of rich 
and diverse microbial communities in HBM. Some studies 
suggested that the genera Staphylococcus and Streptococcus 
may be universally predominant in HBM, but the origin of 
microbiota still remains controversial. Lastly, milk is the one of 
most abundant body fluid of microRNAs, which are known 
to play a role in various functions, such as immunoprotection 
and developmental programming, through delivering from 
HBM and absorption by intestinal epithelial cells. In conclusion, 
HBM is the most important source of nutrition for infants and 
includes microbiomes and miRNAs for growth, development, 
and immunity.
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Introduction

Human breast milk (HBM) is essential for the infant’s growth 
and development right after birth and is an irreplaceable source 
of nutrition for early human survival.1,2) For this reason, the 
World Health Organization and United Nations Children’s 
Fund recommend exclusive HBM feeding for at least 6 months 
after birth and to continue for up to 2 years of age or beyond.3-5) 

In recent years, various infant formulas have been developed 
for greater similarity to HBM and are being supplemented 
with breast milk-specific ingredients, such as human milk oligo-
saccharide (HMO).6-8) Although these formulas are similar to 
HBM in terms of many components, there is no perfect sub-
stitute for HBM.9) This makes it imperative to discuss the com-
ponents that make HBM more suitable than infant formulas 
for humans. Many studies to date have revealed nutritional 
components, such as various macronutrients and micronutrients, 
in HBM and have studied about its immunologic components. 
In addition, recently, various HBM components and their 
roles have been studied with the implementation of various 
analysis techniques, such as next-generation sequencing. In 
this article, we will explore the various components of HBM. 
A better understanding of these HBM components will help 
in various aspects, such as imparting lactation education and 
encouraging better feeding habits, as well as in the treatment of 
high-risk infants, such as those with premature birth, infections, 
neurological diseases, and gastrointestinal diseases.

Nutrient composition in HBM

1. Macronutrients

As is already well known, HBM contains about 87%–88% 
water, and it has a specific gravity of 1.030, osmolarity of about 
286 mOsm/L, and 124-g/L solid components as macronutri ents, 
including about 7% (60–70 g/L) carbohydrates, 1% (8–10 g/L) 
protein, and 3.8% (35–40 g/L) fat10-13) (Table 1). Typically, mature 
milk contains 65–70 kcal per 100 mL of energy, and about 50% 
of the total calorie supply is fat and 40% is carbohydrates.14) 
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However, unlike infant formulas, which have a narrow range 
of composition guidelines based on strict criteria for health 
effects on infants, the nutrient composition of HBM is dynamic 
for various reasons.14-16) The composition of HBM may vary 
depending on the maternal diet, mammary gland physiology, 
maternal health, and many other environmental factors.13,14) In 
addition, it may vary depending on prematurity, on whether it 
is foremilk or hindmilk, and on whether it is colostrum, transi-
tional milk, or mature milk.17) It may vary depending on the 
processing conditions, such as storage, pasteurization, and con-
tainers.18,19) In the case of foremilk released by the mammary 
gland, the fat content is relatively low and increases with feeding, 
whereas hindmilk has higher fat content. The protein and lactose 
contents are not significantly different between them. Colostrum 
is low in fat but high in protein (10%) and is relatively rich in 
immune-protective components, such as immunoglobulin A 
(IgA) and lactoferrin, which help prevent neonatal infections. 

1) Carbohydrates
Carbohydrates are the most prominent macronutrient in HBM 

and plays an important role in infant’s nutrition, in developing 
the physiological function of the entire gastrointesti nal tract right 
from birth, and in maintaining the composition of the intestinal 
microbiota.20,21) Most humans ingest carbohydrates in the form 
of glucose, whereas infants, who have not yet de veloped the 
gastrointestinal tract, ingest carbohydrates in the form of lactose. 
Thus, lactose is the major carbohydrate constituent of HBM and 
is the most abundant nutrient in breast milk. Lactose is digested 
by lactase-phlorizin hydrolase, also called lactase, which is pre-
sent on the apical surface of enterocytes in the small intestinal 
brush border; lactose is readily digested in almost all infants.12) 
However, the lack of enzymes can cause various symptoms, such 
as lactose intolerance or malabsorption. Unlike protein and fat, 
colostrum contains rela tively fairly constant lactose with time.15,22) 
A constant level of lactose is important for maintaining a constant 
osmotic pressure in HBM. In addition, carbohydrate-based bio-

Table 1. Energy and macronutrient composition of human breast milk and proposed composition recommended in cow milk 
formula

Variable
Colostruma) 
(1–5 days)

Mature milka) 
( >14 days)

Bovine formulab)

(minimum–maximum)

Energy 50–60 kcal/100 mL 65–70 kcal/100 mL 60–70 kcal/100 mL

Carbohydrate 50–62 g/L 60–70 g/L 9.0–14.0 g/100 kcal

Lactose 20–30 g/L 67–70 g/L

Oligosaccharides 20–24 g/L 12–14 g/L

Total protein 14–16 g/L 8–10 g/L 1.8–3.0 g/100 kcal

Total fat 15–20 g/L 35–40 g/L 4.4–6.0 g/100 kcal
a)The range of each components is slightly different according to studies. b)Codex standard for infant formula and formulas for special medical purposes 
intended for infants (Codex Stan 72-1981, Amendment: 2016).

3. Hormones and Growth factors
EGF, IGF-1/2, VDGF, Epo, Adiponectin
BDNF, GNDF, CNTF

5. microRNAs
help constructing infants immune system through intestine

4. Microbial communities
Staphylococcus, Streptococcus, Lactobacillus, Propionibacterium
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Graphical abstract. Human breast milk (HBM) contains macronutrients and micronutrients, and its 
composition varies according to environmental factors. Colostrum is low in fat but high in protein and 
relatively rich in immunoprotective components. Micronutrients, hormones, and growth factors in HBM 
also play various roles in infant development. Microbial communities and microRNAs help construct the 
infant immune system.
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active components, such as oligosaccharides, are attached to 
lactose; this aids in the absorption of minerals and calcium.15) The 
levels of free glucose and other glucose metabolites in HBM are 
low; thus, their nutritional significance is negligible in infants.23)

Highly complex HMOs are the second most abundant car-
bohydrate in HBM after lactose and the third most abundant 
solid component.24,25) HMOs make up about 20% of the total 
HBM carbohydrates and are present in a concentration of 12–
14 g/L in mature milk and >20 g/L in colostrum.24) Known as 
“gynolactose” by L'espagnol and Plinowski in the 1930s, more 
than 150 HMO structures have been described to date.26) In terest 
in HMOs has been increasing in recent years not only for the 
nutrition of infants but also for commercial purposes. HMOsare 
produced only in lactating mammary glands, which are not 
found in infant formulas, but recently, various types of oligo-
saccha rides have been added to infant formulas.6,7) Immediately 
after birth, the gut is sterile, but to prevent various infections after 
birth, the infant intestine must adapt to various circumstances 
and acquire an immune system. While direct ingestion of various 
bioactive compounds in HBM affects immunity, acquisition of 
intestinal colonization as an antimicrobial factor is also impor-
tant.27) Unlike lactose, which is easily digested, HMOs reache 
the colon in almost intact form due to their limited diges tion; 
HMOs are known to play an important prebiotic role in the 
development of gut microbiota in early stages after birth.28) In 
various previous studies, HMOs have been shown to reduce the 
duration of diarrhea and have a positive effect on the growth of 
bifidobacteria.29-33) They also play an important role as an energy 
source for enterocytes and are associated with the production 
of short-chain fatty acids, which are key signaling molecules for 
maintaining gut health.28) These short-chain fatty acids are known 
to inhibit the growth of potentially harmful gut microbiota by 
reducing intestinal pH.34) In addition to this indirect role, some 
HMOs are thought to be involved in various systemic circulations 
to regulate direct immune responses.28) In various studies of 
human infants, on comparing HMOs and infant formulas, the 
former also showed positive effects against infections, such as 
campylobacter. However, various studies are being conducted 
because much research on infant health is still lacking.

2) Protein
Protein is a major component that functions and organizes all 

cells in the human body, and sufficient protein supply is essential 
for growth, development, and function. The protein of HBM 
comprises a mixture of whey and casein, and various peptides. 
Casein is micellar and is present in the form of clots or curd in 
the stomach and is not easily dissolved. Whey is in liquid form 
and is easy to digest.14) The whey/casein ratio varies according 
to the time of breast milk. In colostrum, the whey/casein ratio 
is absolutely high at almost 90:10, but this gradually changes 
to 60:40 in mature milk. Nevertheless, the proportion of whey 
is relatively higher in HBM than in infant formula, wherein it is 
about 20%.11,35) Casein exists as alpha, beta, gamma, and kappa 
casein. Alpha casein is abundant in bovine milk and is rarely 

present in HBM.13,36) Casein of HBM is more easily digested in 
the form of looser micelles and softer curd by carboxypeptidase, 
which regulates intestinal motility and aids calcium absorption. 
Lönnerdal et al.37) reported that low casein proportion in 
HBM is associated with slower growth in breastfed infants. 
Representative whey proteins of HBM are alpha-lactalbumin, 
lactoferrin, and secretory IgA.14) Among these, alpha-lactalbu-
min constitutes 40% of the whey protein of HBM, but beta-
lactoglobulin is the representative whey protein of bovine 
milk and is absent in HBM.37) Alpha-lactalbumin aids in the 
synthesis of lactose in mammary glands and in the supply of 
essential amino acids and absorption of minerals and trace 
elements in infants.38) It also plays a role in the immune system 
and antibacterial properties. Lactoferrin and lysozyme inhibit 
the spread of potentially pathogenic bacteria, and IgA protects 
intestinal mucosa and destroys bacteria.14)

Protein content in HBM at birth is about 14–16 g/L, but 
decreases to 8–10 g/L after 3–4 months of birth and further 
decreases to 7–8 g/L after 6 months.11,15) The protein concen-
tration of HBM is not significantly affected by maternal diet 
but increases with maternal body weight for height.14) In HBM, 
nonprotein nitrogen is present in about 20%–25% of HBM 
protein, which is a higher rate than 5% in bovine milk.13,36,39) 
Nearly 50% of this is urea nitrogen, which is used to synthesize 
nonessential amino acids.39)

3) Fat
In HBM, fat is the second largest macronutrient and plays 

the most important role in the nutrient supply in infants (nearly 
50% of the total energy content) and the development of the 
central nervous system.15) Colostrum contains 15–20 g/L of fat, 
but this amount gradually increases, and mature milk contains 
almost 40 g/L. Its levels are 2–3 times higher in hindmilk than 
in foremilk.40) The major component of HBM fatty acid is 
triglyceride (about 95%–98%), and it also contains 2 essential 
fatty acids, linoleic acid and alpha-linolenic acid.11) Linoleic acid 
and alpha-linolenic acid are precursors of arachidonic acid and 
eicosapentaenoic acid (EPA) respectively, the latter is further 
converted to docosa hexaenoic acid (DHA), and cannot be 
synthe sized in the human body. In addition, they are important 
for inflammatory responses, immune function, and growth 
as components required in the production of in vivo signal 
transduction and coponents of the nervous system and retina.15) 
Fats in HBM are more easily digested and absorbed than those in 
infant formulas due to the presence of bile salt-stimulated lipases 
that complement pancreatic lipases and the presence of palmitic 
acid at the sn-2 position of human milk triglycerides.41) This 
positional preference is not well confirmed in infant formulas 
and affects plasma lipid profile in infants, including cholesterol 
concentration.25)

Fat content in HBM is closely related to maternal diet and 
weight gain during pregnancy; in addition, there are regional 
differences in food intake.15) The consumption of foods such as 
breads, snacks, fast foods, and margarines by lactating mothers 
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can cause trans fatty acids to be found in HBM and may 
account for up to 7.7% of total fatty acids.42) Trans fatty acid 
concentrations vary from region to region, and they have ad-
verse effects on infant growth and development and are inversely 
related to linoleic acid and alpha-linolenic acids.42,43) Arachidonic 
acid also correlates with arachidonic acid-rich food intake from 
lactating mothers, and EPA and DHA are also closely related.44,45) 
Therefore, vegetarians have very low levels of DHA in their 
milk because of the lack of fish or other foods in their diet.46) 
Therefore, it is recommended to take up to 300 mg of DHA per 
day to maintain sufficient amount of DHA in breast milk.47) 

2. Vitamins and minerals

Although HBM is influenced by the diet in lactating women, 
in most cases, it contains enough vitamins to ensure normal 
growth of the infant.15) However, vitamins D and K may be 
insufficient in infants who are exclusively breastfeeding and 
may require supplementation. Vitamin D is influenced by sun 
exposure as well as the maternal diet, which is related to climate, 
season, latitude, skin color, and life style. HBM typically contains 
less than 1 mg or less than 40 IU/L of vitamin D, which is not 
sufficient to meet the needs of infants. Breastfed infants can 
receive vitamin D from HBM synthesized by sunlight exposure 
in lactating mothers or stored during pregnancy. However, 
the stored vitamin D is rapidly depleted in infants. The Korean 
Nutritional Society and American Academy of Pediatrics 
recommend lactating mothers and infants to take vitamin D 
supplements of 200–400 IU per day in maintenance doses and 
2,000 IU/day in deficiency.48,49) Vitamin K is also transferred 
from mother to fetus in limited amounts, so newborn infants can 
be deficient in vitamin K. Therefore, vitamin K supplementation 
is recommended after birth.15,50) Water soluble vitamins are also 
greatly affected by maternal status.51) In general, mothers who 
do not have enough diet may be deficient in vitamins B6, B12, 
and folate but may still have relatively sufficient thiamin and 
riboflavin content.51) More than 20 minerals, including iron, 
copper, and zinc, have been identified in HBM, most of which 
are abundant in colostrum and decrease as lactation progresses. 
52) Unlike vitamins, most minerals are not significantly affect-
ed by the maternal status and do not vary greatly with mater-
nal supplements13-15,53) (Table 2). The mineral content is lower 
in HBM than in infant formulas, but due to their high bio-
availability, no additional supplementation is required during 
full breastfeeding. In particular, iron content is 0.5–1.0 mg/L 
in colostrum and 0.3–0.7 mg/L in mature milk, but its bio-
availability is 20%–50%, which is more effective than in infant 
formula (4%–7%). Therefore, in exclusively breastfed infants, it 
is generally not necessary to supply iron before 4–6 months of 
age, and then, it is recommended to supply gradually through 
iron-enriched solid foods.

3. HBM components in prematurity infants

Premature infants may experience a variety of problems when 
compared to full-term births. Nutritional attention and sufficient 

supply are needed because the risk of growth failure, neurode-
velopmental delay, sepsis, and gastrointestinal problems, such 
as necrotizing enterocolitis, is higher.17) In addition, defi ciency-
related complications may occur because of the failure to deliver 
various nutrients that are transferred from the placenta to the 
fetus during the third trimester.54,55) Even in this case, HBM plays 
a primary role as an enteral diet. However, HBM in mothers 
feeding premature infants differs from HBM in mothers feeding 
term infants. Protein content and bioactive components tend to 
be richer, with more fat, free amino acids, and sodium in the pre-
term.17) However, these components tend to decrease gradually 
as lactation progresses. Copper and zinc are also higher in the 
HBM of mothers feeding preterm infants and decrease gradually 
with lactation, whereas calcium is lower in preterm cases and 
gradually increases with lactation.56,57) Most other minerals have 
comparable levels at preterm and full term. Lactose, which is 
present in low amounts in colostrum and increases as lactation 
progresses, is more pronounced in preterm milk.17) In addition, 
lactase in the small intestine is not formed and secreted until 32 
weeks of gestation, so it is difficult for premature infants born 
before 32 weeks of gestation to digest breast milk. HMOs vary 
in the overall content depending on genetic diversity and the 
content of fucosylated HMOs.58,59) Differences in the content 
of bioactive molecules, such as growth factors and lactoferrin, 
between colostrum and early mature milk are greater between 
HBM mothers with preterm birth and HBM mothers with 
full-term birth.17) Donor milk or fortification can be used to 
compensate for the lack of mother's own milk for long-term 
growth and prognosis of preterm infants.17)

4. Hormones and growth factos in HBM

Hormones and growth factors in HBM also serve as various 
bioactive proteins and peptides.60) Functions of hormones in 
HBM, including parathyroid hormone, insulin, leptin, ghrelin, 
apelin, nesfatin-1, obestatin, and adiponectin, and their effects in 

Table 2. Micronutrient composition of human breast milk and 
proposed composition recommended in cow milk formula

Micronutrient
Colostruma)

(1–5 days)
Mature milka) 
( >14 days)

Bovine formulab)

(minimum–maximum)

Iron 0.5–1.0 mg/L 0.3–0.7 mg/L 0.45– mg/100 kcal

Calcium 250 mg/L 200–250 mg/L 50– mg/100 kcal

Phosphorus 120–160 mg/L 120–140 mg/L 25– mg/100 kcal

Magnesium 30–35 mg/L 30–35 mg/L 5– mg/100 kcal

Sodium 300–400 mg/L 150–250 mg/L 20–60 mg/100 kcal

Chloride 600–800 mg/L 400–450 mg/L 50–160 mg/100 kcal

Potassium 600–700 mg/L 400–550 mg/L 60–180 mg/100 kcal

Manganese 5–12 μg/L 3–4 μg/L 1– μg/100 kcal

Iodine 40–50 μg/L 140–150 μg/L 10– μg/100 kcal

Selenium 25–32 μg/L 10–25 μg/L 1– μg/100 kcal

Copper 0.5–0.8 μg/L 0.1–0.3 μg/L 35– μg/100 kcal

Zinc 5–12 μg/L 1–3 μg/L 0.5– mg/100 kcal
a)The range of each components is slightly different according to studies. 
b)Codex standard for infant formula and formulas for special medical 
purposes intended for infants (Codex Stan 72-1981, Amendment: 2016).
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infants are not yet well known. Conversely, many growth factors 
have been studied relatively more and are known to have various 
effects on the intestinal tract, vasculature, nervous system, 
and endocrine system14) (Table 3). Epidermal growth factors 
play a critical role in intestinal maturation and repair. Their 
levels in colostrum are 2,000 times higher than in mature milk 
and decrease with lactation.14,61) Brain-derived neurotrophic 
factor and glial cell-line-derived neurotrophic factor act on the 
enteric nervous system and are necessary for the development of 
immature intestine in infants.62) These neuronal growth factors, 
including ciliary neurotrophic factor, are found in HBM for up 
to 90 days after birth.63-65) Among the neuronal growth factors, 
S100B is higher in mature milk than in colostrum.66) Insulin-like 
growth factor (IGF)-1 and IGF-2 are abundant in colostrum and 
decrease with lactation; their levels are not significantly different 
between preterm and term milk, except for IGF-binding pro-
tein-2 among in the IGF superfamily.67-69) IGF is taken up in its 
bioactive form by the intestine and transported to the blood 
system.70,71) IGF-1 plays a role in the survival of enterocytes by 
protecting them against intestinal damage caused by oxidative 
stress; furthermore, it stimulates erythropoiesis and helps in-
crease hematocrit.70,72) Vascular endothelial growth factor and 
its antagonists are thought to help regulate angiogenesis and 
reduce damage to the retinopathy of prematurity.14,73) The con-
centration of vascular endothelial growth factors is higher in 
colostrum in both preterm and term and lower in preterm 
milk than in term milk.74) Erythropoietin plays a primary role 
in the increase of red blood cells and is thought to help prevent 
anemia of prematurity.75,76) It also plays a role in tightening 
intestinal junctions and may help reduce the risk of necrotizing 
enterocolitis.76,77) Adiponectin is found in large amounts in 
breast milk, which crosses the intestinal barrier and regulates 
metabolism and inhibits inflammation.78,79)

Microbiome in HBM

Just 20 years ago, HBM of a healthy mother was thought to 
be sterile according to culture-based studies.80) The bacteria in 
the HBM were thought to be contaminants or pathogens, parti-
cularly the cause of mastitis. In a culture-based study conducted 
in 2003, Martin et al.81) proved for the first time that HBM 

was a significant source of lactic acid bacteria for the infant gut. 
They found DNA profiles of lactic acid bacteria from HBM to 
be different from those in mother’s skin.81) In the same year, 
Heikkila and Saris82) also performed a culture-based study and 
reported that HBM of healthy mothers contains commensal 
bacteria. They concluded that an infant consuming about 800 
mL of HBM per day ingests 8×104–106 commensal bacteria. 

Several subsequent studies have confirmed the presence of 
microbiota in HBM.83-86) Recently, the development of a non-
culture sequencing technique has made way for a changed 
perception that there are rich and diverse microbial communities 
in HBM87) and that they play an important role in the formation 
of infant gut microbiota.88) 

In 2011, Hunt et al.85) reported in a first study using next-
generation sequencing for this examination that there is a core 
HBM microbiome of 9 bacterial genera. These 9 core bacteria 
were present in every sample and represented about half of the 
microbial community. Various subsequent studies have examined 
the core bacteriome of HBM, but there was a difference in 
results.85,89,90) These differences may be due to methodological 
differences among the studies, but several common bacterial 
genera, including Staphylococcus, Streptococcus, Lactobacillus, 
and Propionibacterium, have been reported. Fitzstevens et al.87) 
performed a systematic review of studies using culture-inde-
pendent methods. They suggested that the genera Staphyloco
ccus and Streptococcus are universally predominant in HBM, 
regardless of differences in geographic location or analytic 
methods. A recent systematic review by Togo et al.91) confirmed 
a high diversity of human milk microbiota with 820 species. 
The most of the frequently detected species were facultative 
anaerobic or strictly aerobic bacteria: Staphylococcus aureus, 
Staphylococcus epidermidis, Streptococcus agalactiae, Cutibac
terium acnes, Enterococcus faecalis, Bifidobacterium breve, 
Escherichia coli, Streptococcus sanguinis, Lactobacillus gasseri, 
and Salmonella enterica. 

The origin of HBM microbiota is still controversial. In an 
earlier study, Martin et al.81) suggested that bacteria present in 
HBM may have an endogenous origin because of the difference 
between the bacterial DNA profiles of HBM and those of other 
areas. A recent hypothesis called “enteromammary pathway” 
states that maternal gut microbiota penetrate the intestinal epi-
thelium, move to the mammary glands, and colonize the infant 

Table 3. Growth factors in human breast milk and their functions 

Growth factors Functions

Epidermal growth factor Maturation and healing of the intestinal mucosa

Neuronal growth factors Development of the enteric nervous system in newborns

Brain-derived neurotrophic factor Alleviation of impaired peristalsis

Cell-line-derived neurotrophic factor Neuron survival and outgrowth

Ciliary neutrotrophic factor, S100B protein

Insulin-like growth factor superfamily Stimulation of erythropoiesis 

Vascular endothelial growth factor Regulation of angiogenesis

Erythropoietn Responsible for increasing red blood cells

Adiponectin Regulation of metabolism and suppression of inflammation
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gut via milk consumption.80,92) Urbaniak et al.93) determined 
that the human breast tissue microbiota and HBM microbiota 
shared several bacterial genera. Another possible hypothesis 
is that HBM microbiota comes from mother’s skin or infant’s 
oral cavity. Ramsay et al.94) reported using ultrasound imaging 
that there is a high degree of retrograde flow of milk from the 
infants’ mouth back into the mammary ducts. This suggests 
that commensal bacteria from the skin or mouth can enter the 
mammary duct during breastfeeding. 

Several studies have proved the vertical transmission of 
maternal bacteria to the infant’s gut with HBM feeding.81,88,95-97) 
HBM microbiota have been shown to influence the gut colo-
nization and play a role in immunomodulation and endogenous 
metabolism. A better understanding of HBM microbiota will 
make it possible to clarify the effect of HBM on short- and long-
term human health outcomes and improve them.  

MicroRNAs of HBM

MicroRNA (miRNA) is a small noncoding RNA with 18 to 
25 nucleotides; it is found in plants, animals, and viruses, among 
others. It acts as a core regulator at the posttranscriptional level 
and is known to be involved in the development, differen tiation, 
proliferation, and metabolism of cells and tissues.98-101) Tens of 
thousands of these miRNAs are currently known, and many 
studies are being conducted to understand the patho physiology 
of various diseases, including cancer, through miRNAs. Extra-
cellular miRNAs are used as ideal biomarkers for the diagnosis 
and prognosis of diseases, including cell-cell commu nication. 
Milk is the most abundant body fluid of RNAs and miRNAs 
and is known to play a role in various aspects of the infant's 
immune system via miRNAs delivered through HBM.102-104) 
There are almost 1,400 different species of mature miRNAs in 
HBM, which vary depending on the test method and research, 
between colostrum and mature milk, and among milk cell, 
milk lipid, and milk exosomes.105-107) MiRNAs in HBM are 
synthesized in mammary glands and are present in milk as free 
molecules and packaged in vesicles, such as milk exosomes and 
fat globules.105,106) These are thought to be transported to the 
infant’s intestine through lactation; these remain intact in the 
degradative conditions of the infant's gastrointestinal system and 
are absorbed by intestinal epithelial cells.104) Then, they appear 
to reach various tissues and organs through the bloodstream 
and perform various functions, such as immunoprotection and 
developmental programming.104) Although miRNAs are also 
found in high concentrations in animal milk, the infant formula 
contains few human mature miRNA species which are expressed 
at much lower levels than in HBM.107) MiRNAs are also stable in 
conditions, such as acidic environments, RNase treatment, and 
freezing compared to HBM fractions; however, they decompose 
in the presence of detergents or bacterial fermentation.104,105)

Conclusion

With the development of various technologies, humans have 
been able to replace much of what is available in nature. HBM 
for infants has also been attempted to be replaced by various 
artificial milk types. Nevertheless, there is no perfect replacement 
for HBM yet. Macronutrients, such as carbohydrates, proteins 
(including immunologic components), fats, various micronutri-
ents, and vitamins, trophic factors, as well as microbiome and 
miRNA are in the spotlight recently; these are the components 
of HBM available only in humans and only through lactating 
mothers, thus making them diverse and irreplaceable. Many of 
these components and their association with infant growth and 
development and human health have not been properly eluci-
dated and are being actively studied. However, taken together, as 
the various components of HBM are best suited for optimal early 
human growth and development, it remains unchanged that 
HBM from a lactating mother who is maintaining a balanced 
diet is the most desirable nutrition for infants.
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