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Review article

Height gains result from longitudinal bone growth, which 
is largely dependent on chondrocyte differentiation and 
proliferation within the growth plates of long bones. The 
growth plate, that is, the epiphyseal plate, is divided into 
resting, proliferative, and hypertrophic zones according 
to chondrocyte characteristics. The differentiation poten-
tial of progenitor cells in the resting zone, continuous 
capacity for chondrocyte differentiation and proliferation 
within the proliferative zone, timely replacement by 
osteocytes, and calcification in the hypertrophic zone are 
the 3 main factors controlling longitudinal bone growth. 
Upon ade quate longitudinal bone growth, growth plate 
senescence limits human body height. During growth 
plate senescence, progenitor cells within the resting zone 
are deplet ed, proliferative chondrocyte numbers de crease, 
and hypertrophic chondrocyte number and size decrease. 
After senescence, hypertrophic chondrocytes are replaced 
by osteocytes, the extracellular matrix is calcified and va-
scularized, the growth plate is closed, and longitudinal 
bone growth is complete. To date, go nadotropin-releasing 
hormone analogs, aromatase inhi bitors, C-type natriuretic 
peptide analogs, and fibroblast growth factor receptor 3 
inhibitors have been studied or used as therapeutic interv-
entions to delay growth plate closure. Complex networks 
of cellular, genetic, paracrine, and endocrine signals are 
involved in growth plate closure. However, the detailed 
mechanisms of this process remain unclear. Further eluci-
dation of these mechanisms will enable the development 
of new thera peutic modalities for the treatment of short 
stature, precocious puberty, and skeletal dysplasia.
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Key message
Height gains result from longitudinal bone growth. Upon 
adequate growth, growth plate  closure limits longitudinal bone 
growth. To date, gonadotropin-releasing hormone analogs, 
aromatase inhibitors, C-type natriuretic peptide analogs, and 
fibroblast growth factor receptor 3 inhibitors have been studied 
or used as therapeutic interventions to delay growth plate 
closure and increase human height. The development of more 
effective therapeutic modalities for short stature, precocious 
puberty, and skeletal dysplasia is anticipated.

Introduction

Longitudinal bone growth results from chondrogenesis at 
the growth plate and endochondral ossification.1-5) Chondro-
cyte hypertrophy, differentiation, and proliferation as well 
as extracellular matrix secretion continue during growth 
plate maturation.6) Once adequate growth plate maturation 
is achieved, unknown signals cause growth plate senescence 
and closure. At that time, progenitor cells within the resting 
zone become depleted, proliferative chondrocyte numbers 
decrease, and hypertrophic chondrocyte numbers and size 
decrease. Subsequently, hypertrophic chondrocytes are 
replaced by osteocytes, the extracellular matrix becomes 
calcified and vascularized, and longitudinal bone growth 
ends.7)

Although the detailed mechanisms of these processes 
remain unclear, many pathways associated with genetic, 
intracellular, extracellular, autocrine, paracrine, and endoc-
rine factors are involved.8,9) Thus, the elucidation of the 
mechanisms underlying growth plate maturation, sene-
scence, and closure may provide an opportunity to develop 
new treatment strategies for various growth disorders. This 
review details evidence-based reports on the mechanisms 
of and therapeutic trials of treatments to delay growth plate 
closure.
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Growth plate structure, function, and closure

The growth plate, located between the epiphysis and meta-
physis of the long bone, is divided into 3 zones according to 
the characteristics of the chondrocytes within each. The 
resting zone comprises small chondrocytes that act as proge-

nitor cells with slow replication rates. The proliferative zone 
contains flat chondrocytes that line the long axis of the 
bone and replicate quickly. The hypertrophic zone is a layer 
of chondrocytes undergoing terminal differentiation that 
features increased thickness, surrounds a calcified matrix, 
and attracts factors for bone and vessel formation1-5) (Fig. 1A).

Fig. 1. Cellular patterns of chondrocyte differentiation, proliferation, and hypertrophy 
in a maturing (A) versus senescent (B) growth plate. Modified from Nilsson et al. 
Trends Endocrinol Metab 2004;15:370-4,10) with permission of Elsevier Inc.

Graphical abstract. Growth plate closure mechanism and therapeutic interventions used to 
delay its senescence to increase human height. GH, growth hormone; IGF-1, insulin-like growth 
factor-1; GnRHa, gonadotropin-releasing hormone analog; AI, aromatase inhibitor; FGFR-3, FGF 
receptor-3; CNP, C-type natriuretic peptide; FGF, fibroblast growth factor.
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During linear growth, growth plate thickening and matu-
ration, chondrocyte proliferation and differentiation, extra-
cellular matrix secretion, hypertrophic zone calcification, 
osteoblast invasion and differentiation, and blood vessel 
formation processes repeat continuously.4-9) However, at 
the end of puberty, these processes cease and longitudinal 
bone growth is completed via the growth plate senescence 
and closure processes8,9) (Fig. 1B).

1. Resting zone
Progenitor cells within the resting zone can continuously 

differentiate and proliferate into chondrocytes during growth 
plate maturation but lose this capacity during growth plate 
senescence.10-12) Therefore, postnatal skeletal growth ap-
pears to be driven by the epiphyseal stem cell niche.13-15)

There are 2 hypotheses regarding programmed sene-
scence of the growth plate: cell counting and a biological 
timing mechanism.10,12) In a growth plate transplantation 
experiment, the growth rate of the transplanted growth 
plate was dependent on donor animal, but not recipient 
animal, age. This experiment showed the finite proliferative 
capacity of the growth plate similar to the cell-counting 
mechanism.16) In addition, in a murine study, loss of telo-
merase activity had no major effects on skeletal growth, 

indicating that telomere shortening is not the primary 
mechanism limiting chondrocyte proliferation.17) However, 
in vitro studies have shown that epigenetic changes in the 
methylation of genomic DNA may limit chondrocyte repli-
cation.18) The cellular programmed factors related to these 
theories have yet to be clearly elucidated.

Several transcription factors are considered involved in 
progenitor cell differentiation (Table 1). The conversion of 
progenitor cells in the mesenchymal condensation into the 
chondro cyte lineage is controlled by SRY-Box transcription 
factor 9 (SOX9) expression. The subsequent chondrocyte 
differen tiation is influenced by SOX9, SOX5, and SOX6.19)

Bone morphogenic protein (BMP) is a paracrine factor 
that promotes progenitor cell differentiation into prolifera-
tive chondrocytes.20)

2. Proliferative zone
Chondrocytes continue to proliferate and differentiate 

into prehypertrophic and hypertrophic chondrocytes before 
growth plate senescence under the influence of complex 
interactions among paracrine, endocrine, and transcription 
factors1-6) (Fig. 2).

BMP is a paracrine signal that promotes progressive 
differentiation from the resting state through proliferation 

Fig. 2. Molecular networks involved in chondrocyte differentiation, proliferation, and hyper-
trophy. SOX9, SRY-box transcription factor 9; BMP, bone morphogenic protein; PTHrP, 
parathyroid hormone-related peptide; IHH, Indian hedgehog; Runx2, runt-related transcription 
factor 2; FGF, fibroblast growth factor; CNP, C-type natriuretic peptide; HIF-1, hypoxia-inducible 
factor-1; VEGF, vascular endothelial growth factor; WNT, Wingless-type mouse mammary 
tumor virus integration site signaling; CC, calcified cartilage. Modified from Ağırdil et al. EFORT 
Open Rev 2020;5:498-507 with permission.5)
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to hypertrophic chondrocytes. BMP is involved in perichon-
drium, periosteum, and osteoblast development.21-23)

Parathyroid hormone-related peptide (PTHrP), which is 
secreted from periarticular chondrocytes, diffuses across 
the growth plate cartilage to maintain chondrocyte prolife-
ration.24)

Indian hedgehog (IHH), secreted by prehypertrophic and 
hypertrophic chondrocytes, stimulates PTHrP secretion 
and promotes the differentiation of proliferative chondro-
cytes into prehypertrophic chondrocyte.25-27)

Fibroblast growth factor (FGF) is also important for 
perichondria, periosteum, and osteoblast development. In 
vivo studies have indicated that FGF receptor-1 and FGF 
receptor-3 (FGFR-3) have growth-inhibiting effects and 
FGF receptor-2 has growth-promoting effects on longitu-
dinal bone growth.28-29) Runt-related transcription factor 2 
(Runx2) is a transcription factor that is required for further 
chondrocyte differentiation and hypertrophy.20)

Various endocrine factors are involved in chondrocyte 
proliferation and differentiation (Table 2).30) Growth hor-
mones (GHs) positively regulate insulin-like growth factor-1 
(IGF-1) synthesis and secretion in the liver and growth 
plates. Longitudinal bone growth is stimulated by GH, 
circulating IGF-1, and locally secreted IGF-1 in the growth 
plate. Among them, IGF-1 produced locally from chondro-
cytes is especially important for chondrocyte differentiation, 
proliferation, and hypertrophy; moreover, it stimulates 
extracellular matrix production and ossification within the 
growth plate.31)

The binding of estrogen to its receptor (estrogen receptor 
[ER]) stimulates the GH-IGF-1 axis, especially during the 
pubertal growth spurt. Both receptor subtypes (ERα and 
ERβ) are related with the augmentation of GH secretion 
and expressed in the resting, proliferative, and hypertrophic 
zones of the growth plate.32-35) There is evidence that growth 
plate closure occurs when the proliferative capacity of pro-
genitor cells within the resting zone becomes exhausted. 
Estrogen can accelerate the exhaustion of proliferative 
potential and advance growth plate senescence. The binding 
of estrogen to each ER subtype is considered related to growth 
plate closure. ERα appears to be the dominant mediator 
of estrogen actions. ERβ has some repressive functions 
within the long bones in mice; however, its definite roles 
in the long bones of humans remain unclear. Estrogen also 
promotes bone formation and remodeling by stimulating 
osteoblastogenesis and inhibiting osteoclastogenesis.36-39)

Androgens with aromatized estrogen contribute to 
growth plate maturation and senescence through direct or 
indirect interactions with growth plate chondrocytes. In an 
organ culture study, testosterone stimulated chondrocyte 
proliferation with increased local IGF-1 production, while 
dihydrotestosterone promoted chondrocyte proliferation 
and proteoglycan synthesis within the growth plates. In 
growth plate closure, the function of androgen is attributed 
to the aromatization of androgen to estrogen in various 
peripheral tissues, including the growth plate cartilage.40,41)

Thyroid hormones stimulate chondrocyte proliferation, 
hypertrophy, and growth plate maturation.8)

Glucocorticoids inhibit longitudinal bone growth by 
inhibiting the GH-IGF-1 axis and chondrocyte proliferation 
as well as stimulating apoptosis of hypertrophic chondro-
cytes. It also delays growth plate senescence.8)

Table 2. Endocrine factors control growth plate function
Factor Main functions in growth plate

GH Synthesis and secretion of insulin-like growth factor-I
IGF-1 Differentiation, proliferation, and hypertrophy of    

chondrocytes
Estrogen Stimulation of the GH-IGF-1 axis

Acceleration of growth plate senescence
Androgen Proliferation of chondrocytes and proteoglycan syn-

thesis
Aromatization of androgens to estrogens

Thyroid hormone Proliferation and hypertrophy of chondrocytes
Glucocorticoid Inhibition of GH-IGF-1 axis and local secretion of IGF-1

Inhibition of chondrocyte proliferation
Stimulation of apoptosis in hypertrophic chondrocytes
Delay of growth plate senescence

GH, growth hormone; IGF-1, insulin-like growth factor-1.

Table 1. Genetic and paracrine factors controlling the growth 
plate function
Factor Main functions in growth plate

Sox9 Conversion of progenitor cells into chondrocyte
Sox5,6 Differentiation of chondrocyte lineage
BMP Differentiation of resting to proliferative to hypertrophic chondro-

cytes
Stimulation of osteoblastogenesis

PTHrP Slowing down chondrocyte differentiation
IHH Differentiation of chondrocyte lineage
FGF Inhibition of chondrocyte proliferation, stimulation of chondrocyte 

hypertrophy
Runx2 Stimulation of IHH

Differentiation of hypertrophic chondrocyte and osteoblast
CNP Inhibition of FGF and MAPK signaling
HIF-I Stimulation of angiogenesis

Differentiation of hypoxic chondrocyte
VEGF Stimulation of vessel formation

Stimulation of osteoclast invasion into cartilage
Wnt Control of osteoblastogenesis
Sox, SRY-related high mobility group box genes; BMP, bone morphogenic 
protein; PTHrP, parathyroid hormone-related peptide; IHH, Indian hedgehog; 
FGF, fibroblast growth factor; Runx2, runt-related transcription factor 2; CNP, 
C-type natriuretic peptide; MAPK, mitogen-activated protein kinase; HIF-1, 
hypoxia-inducible factor-1; VEGF, vascular endothelial growth factor; Wnt, 
Wingless-type mouse mammary tumor virus integration site signaling.
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3. Hypertrophic zone

1) Replacement of chondrocytes by osteocytes
Chondrocytes in the hypertrophic zone are replaced by 

osteocytes during growth plate maturation and senescence. 
To the best of our knowledge, there are 4 theories (apoptosis, 
autophagy, hypoxia, and transdifferentiation) regarding the 
mechanism of cartilage replacement in bone tissue.11,42-46)

2) Blood vessel formation
Blood vessel formation and vascular invasion are critical 

for substituting avascular cartilage with vascular bone and 
marrow tissues. Vessel formation is mediated by hypoxia-
inducible factor-1 (HIF-1), vascular endothelial growth fac-
tor (VEGF), Runx2, FGF, BMP, transforming growth factor, 
IGF, and platelet-derived growth factor within the growth 
plate.47-50)

3) Osteoblast differentiation and ossification
Five osteoblastic lineage differentiation steps (preosteo-

blasts, mature osteoblasts, osteoid osteocytes, early osteo-
cytes, and mature osteocytes) are necessary to achieve the 
final development of bone tissue within the growth plate. 
Wingless-type mouse mammary tumor virus integration 
site/β-catenin signaling, Runx2, Osterix, BMP, IHH, and 
IGF are the required factors for differentiation.51)

During this process, bones can deposit minerals from the 
extracellular matrix that are rich in type I collagen, com-
pleting ossification and growth plate closure.52)

Therapeutic interventions for delaying growth 
plate closure

1. Gonadotropin-releasing hormone analog
Various preparations of gonadotropin-releasing hormone 

analogs (GnRHa), such as leuprolide acetate, triptorelin 
phosphate, and histrelin acetate, have been used as major 
treatment modalities for idiopathic central precocious pu-
berty. Their effects are mediated by the desensitization of 
pituitary gonadotrophs occupying GnRH receptors, resul-
ting in the suppression of gonadal sex steroid secretion and 
postponement of growth plate closure. The effects on adult 
height increase varied from 2 to 10 cm in children with 
precocious puberty and from 1.7 to 6.7 cm in adolescents 
with idiopathic short stature or growth-limiting syndromes. 
However, adverse effects on bone mineral density have been 
reported in adolescents with idiopathic short stature who 
do not undergo early-onset puberty.53-56)

2. Aromatase inhibitors
Aromatase inhibitors (AIs) inhibit aromatase, which con-

verts androgen into estrogen. Letrozole, anastrozole, and 
exemestane, representative selective AI, were initially used 
to treat breast cancer in women and gynecomastia in men. 
A few reports have described their positive effects on adult 
height after their off-label use to delay growth plate closure. 
However, their general use to increase height in humans is 
not widely accepted because of the possibility of adverse 
effects on bone mineral density and vertebral deformity.57)

3. C-type natriuretic peptide analog
C-type natriuretic peptide (CNP) binds natriuretic peptide 

receptor-B and results in the transformation of guanosine 
5 -triphosphate to cyclic guanosine monophosphate and 
the inhibition of mitogen-activated protein kinase (MAPK) 
and FGF signaling. These signaling pathways stimulate the 
latter steps of chondrocyte hypertrophy within the growth 
plate and promote growth plate closure. CNP analogs have 
been studied as treatment modalities in patients with 
achondroplasia, a disorder characterized by the activation 
mutation of FGFR-3, which results in earlier growth plate 
closure and a severely short stature. Two types of CNP 
analogs, a recombinant CNP analog (vosoritide) and trans-
iently conjugated CNP (navepegritide), can inhibit MAPK 
and FGFR signaling and are new treatment methods for 
achondroplasia.58,59)

4. FGFR-3 inhibitor
FGF binds to FGFR-3 and stimulates Ras-MAPK signal-

ing, inhibiting chondrocyte differentiation and proliferation. 
FGFR3 inhibitors have been studied as treatment moda-
lities for achondroplasia because they block the Ras-MAPK 
pathway and stimulate chondrocyte differentiation and 
proliferation. Such inhibitors include the soluble FGFR3 
decoy (recifercept), anti-FGFR3 monoclonal antibody (vofa-
tamab), and FGFR3-selective tyrosine kinase inhibitor (in-
figratinib).58,60)

Conclusion

Cellular and genetic factors related to the aging of proge-
nitor cells within the resting zone and the transdifferentia-
tion of chondrocytes into osteocytes within the hypertrophic 
zone are considered important in limiting height growth; 
however, their exact mechanisms of action remain unclear. 
Many paracrine and genetic factors are also involved in 
chondrocyte differentiation, proliferation, and hypertrophy 
within the cartilage as well as vascularization and ossification 
in the extracellular matrix of the growth plate; however, 
further studies of their interaction mechanisms are needed. 
Among endocrine factors, estrogen and the GH-IGF-I axis 
are important in chondrocyte differentiation, proliferation, 
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and hypertrophy, but the exact mechanisms by which 
estrogen accelerates growth plate senescence remain un-
known.

The complex interactions between the cellular, genetic, 
paracrine, and endocrine systems within the growth plates 
are closely related to the mechanisms of growth plate ma-
turation, senescence, and closure. Until now, GnRHa, AIs, 
CNP analogs, and FGFR-3 inhibitors have been studied or 
used as the therapeutic modalities for delaying growth plate 
closure. Elucidating the detailed processes of growth plate 
physiology will increase our ability to explain the molecular 
mechanisms responsible for idiopathic short stature, cen-
tral precocious puberty, and skeletal dysplasia as well as 
facilitate the development of more effective the rapeutic mo-
dalities for these diseases.
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