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Review article

The microbiome is a complex ecosystem comprising micro-
bes, their genomes, and the surrounding environment. The 
micro biome plays a critical role in early human development, 
in cluding maturation of the host immune system and 
gastroin testinal tract. Multiple factors, including diet, anti-
biotic use, and other environmental exposures, influence the 
establishment of the microbiome during infancy. Numerous 
studies have identified associations between the microbiome 
and neonatal diseases, including necrotizing enterocolitis, 
sepsis, and malnutrition. Furthermore, there is compelling 
evidence that perturbation of the microbiome in early life 
can have lasting developmental effects that increase an 
individual’s risk for immune and metabolic diseases in later 
life. Supplementation of the microbiome with probiotics re-
duces the risk of necrotizing enterocolitis and sepsis in at-risk 
infants. This review focuses on the structure and function 
of the infant microbiome, the environmental and clinical 
factors that influence its assembly, and its impact on infant 
health and development.

Key words: Microbiome, Neonate infant, Host-microbio-
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Key message
· The infant gut microbiome is highly dynamic and indivi-
dualized.

· Microbes are vertically transmitted from mother to infant 
during delivery and throughout infancy.

· Delivery mode, gestational age, diet, and antibiotic use influ-
ence infant microbiome composition and function.

· In animal studies, the microbiome played critical roles in the 
structural and functional development of the infant gastro-
intestinal and immune systems.

· Microbiome-targeted therapies have great potential to reduce 
infant morbidity and mortality.

Introduction

After birth, the infant’s skin and mucosal surfaces become 

ra pidly colonized by complex microbial communities of 
bacteria, fungi, and viruses.1-3) In early infancy, the composi-
tion and diver sity of these microbial communities diverge 
by body site, driven by differences in nutrient availability, 
the chemical environment, and the host’s immune system 
across sites.3,4) Multiple environ mental factors influence the 
microbiome in infancy, including the maternal microbiome, 
the infant’s diet, delivery mode, and antibiotic exposure.1,5-8) 
The microbiome plays a critical role in shaping multiple 
aspects of infant development, including the structure 
and function of the immune system and intestinal tract.9) 
Altera tions to the composition and diversity of the infant 
microbiome are associated with multiple morbidities inclu-
ding necrotizing enterocolitis (NEC), sepsis, growth failure, 
malnutri tion, and others.10-14) Furthermore, com pelling evi-
dence sup ports that alterations to the microbiome in early 
life have lasting effects on child development that may in-
crease the risk of immune and metabolic diseases in later 
life.15-19) This review will focus on the assembly of micro-
biome in infancy, its influence on infant health and develop-
ment, and potential microbiome-targeted therapies to im-
prove health outcomes.

Sources and dynamics of microbiome assembly 
in infancy

The sources of microbes that seed the infant’s gut 
microbiome include strains present in the microbiomes 
of the mother, other caregivers, and the infant’s environ-
ment.5,20) A diversity of organisms from the mother’s oral, 
vaginal, and skin microbiomes are transiently present in 
the early neonatal intestinal micro biome, but many are 
soon replaced by species better adapted to the intestinal 
environment (Table 1).3,20) Of all maternal body sites, the 
fecal microbiome contributes the highest number of strains 
that stably colonize the infant gut.5,20) Approximately half 
of the species present in the infant’s gut microbiome are 
shared with the maternal microbiome.20) Many of these 
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shared species are present at a low relative abundance 
in the maternal fecal microbiome, as differences in diet 
and the biochemical environ ment in the infant gut exert 
unique selective pressures compared to the mother.20) The 
specific bacterial features that confer a selective advantage 
for some strains to colonize and persist in the infant gut 
over others are only beginning to be elucidated, but they 
include genes involved in polysaccharide utilization, surface 
adhesion, and iron acquisition.21,22) Bacterial strains within 
the Bacteroides, Bifidobacterium, and Escherichia genera 
are com monly shared between mothers and their infants. 
Infants born by cesarean delivery and infants of mothers 
who were administered peripar tum antibiotics have a lower 
proportion of shared bacterial strains from the mother’s 
microbiome than those born by vaginal delivery without 
maternal antibiotic exposure.5,6,23) In addition to bacteria, 
other elements of the microbiome, including bacterial 
viruses (bacteriophages) and fungi, may be vertically trans-
mitted from mothers to their infants.24,25)

Human milk is another source of bacteria that may 
colonize the infant’s intestinal tract.20,26,27) Breast milk con-
tains viable micro bial communities often dominated by 
Staphylococcus, Streptococcus, Acinetobacter, and Pseu-

domonas.26-28) While the microbial profiles of human milk 
and infant stool are generally distinct, there are shared 
bacterial groups between mother’s milk and her infant’s 
stool.26,27) Elucidating the contribution of the breast milk 
microbiome to the infant gut microbiome has been chal-
lenging due to several factors including contamination of 
milk samples with maternal skin flora, retrograde transfer 
of the infant’s oral bacteria to the mammary gland and milk 
during breastfeeding, and technical difficulties extracting 
and amplify ing bacterial DNA from milk.27,29) Milk from 
mothers who feed expressed breast milk has fewer bacterial 
types in common with the infant gut microbiome than 
that from mothers who directly breastfeed their infants, 
suggesting that the transfer of bacteria from the infant 
mouth could be a source of bacteria in mother’s milk.27)

Other sources of bacteria that seed the infant gut include 
microbes transmitted from other family members and 
microbes present in the physical environment.23) The hos-
pital environment may serve as a reservoir of strains 
that colonize the infant, particularly among infants born 
preterm.30-33) In fact, preterm infants often share identical 
bacterial strains with other infants in the neonatal intensive 
care unit.21,34)

Table 1. Vertical transmission of bacteria from the maternal microbiome to the infant gut microbiome
Maternal body site Contribution to the infant’s fecal microbiome

Fecal1,3,5,20,22,23) The infant fecal microbiome shares more species and strains in common with the maternal fecal microbiome than other maternal body 
sites.

Strains commonly shared between maternal and infant fecal microbiomes include strains of Bacteroides vulgatus, Bacteroides uniformis, 
Parabacteroides distasonis, Bifidobacterium adolescentis, Bifidobacterium longum, and Escherichia coli.

In some cases, nondominant strains within a bacterial species in the maternal fecal microbiome are transmitted to the infant instead of 
the dominant strain. 

Vagina3,5,20) Shared species are present in the maternal vaginal microbiome and infant fecal microbiome after birth, but typically do not persist in the 
infant’s fecal microbiome.

Species shared between mothers and infants include Lactobacillus spp, Gardnerella vaginalis, and Atopobium vaginae.
Skin3,20) A minor proportion of the infant’s fecal microbiome is shared with mother’s skin microbiome at birth, but these species typically do not 

persist in infant’s fecal microbiome.
Oral3,20) Shared species are transiently present in the infant fecal microbiome after birth, but typically do not persist
Milk20,27) Shared Bifidobacterium strains and other taxa are present in mother’s milk and infant fecal microbiome.

Retrograde transfer of bacteria from the infant’s oral cavity during breastfeeding may contribute to shared taxa in maternal and infant 
microbiomes.
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The assembly of the microbiome in infancy is a highly 
dynamic process.1,7,35) Meconium samples collected from 
infants typically contain low or undetectable amounts of 
bacterial DNA, but a rapid rise in bacterial density occurs 
within the first postnatal days.2) Many of the early colonizers 
of the infant’s intestinal tract are facultative anaerobes (e.g., 
Enterococcus, Escherichia, Sta phylococcus).1,2,36) Over 
time, an increase is observed in the relative abundance of 
strictly anaerobic organisms. This is thought to reflect a shift 
from an aerobic to anerobic environment in the intestine. 
However, in silico modeling of the meconium micro biome 
suggests that bacterial growth occurs under anaero bic 
conditions within hours of birth.2) After this transition, 
Bifido bacterium and Bacteroides spp. commonly dominate 
the infant gut microbiome.1,7,37,38) In breastfeeding infants, 
these bacteria outcompete others secondary to their ability 
to digest human milk oligosaccharides (HMOs).37,38) In 
later infancy, the relative abundance of anaerobic taxa 
characteristic of the adult fecal microbiome increases (e.g., 
Ruminococcus, Roseburia).1) While the microbiome of 
young breastfeeding infants is enriched in genes involved 
in HMO degradation, the microbiome of older infants is 
enriched with genes required for the digestion of dietary 
fibers present in solid foods.1,37)

Environmental factors that influence infant 
microbiome

The infant microbiome is highly individualized. Variation 
among individual infants often exceeds the variation 
attributable to environmental exposures and treatments.6,39) 
Environmental factors that have been consistently asso-
ciated with microbiome composition and function include 
delivery mode, gestational age, diet, and antibiotics.

1. Delivery mode
The early microbiome of infants born by cesarean de-

livery differs from that of infants born by vaginal de-
livery.1,6,23,40) These differences are most apparent in the 
early neonatal period and diminish over time.1,3,6) The gut 
microbiome of infants born vaginally is characterized by a 
higher relative abundance of Bacteroides spp., Bifidobac-
terium spp., and Escherichia coli, while the microbiome 
of infants born by cesarean delivery has higher relative 
abundance of Klebsiella, Enterococcus, Strepto coccus, 
and Enterobacter spp.1,5-7,39,41) Many of the taxa that are 
over represented in the gut microbiome of infants born by 
cesarean delivery are hospital-associated opportunistic pa-
tho gens. Cesarean delivery is also associated with a higher 
abun dance of antibiotic resistance genes in the neonatal 
microbiome.1) Some studies demonstrated that the differ-

ences in the com position of the microbiome of infants born 
by cesarean versus vaginal delivery are associated with 
functional changes that may impact immune system develop -
ment.40,42,43) For example, one study reported an enrichment 
of lipopolysaccharide (LPS) bio synthesis pathways in the 
microbiomes of infants born vaginally. 42) LPS extracts from 
stool samples of vaginally delivered infants induced stronger 
proinflammatory cytokine responses in vitro compared to 
samples from infants born by cesarean delivery. Studies sup-
port that maternal-to-infant transmission of bacterial strains 
continues to occur throughout infancy and the composi tion of 
the microbiome of infants born by cesarean delivery becomes 
increasingly similar to that of infants born by vaginal delivery 
over time.3,21)

2. Gestational age
Gestational age strongly influences the development of the 

gut microbiome in infancy. Compared to the microbiome of 
term infants, the microbiome of preterm infants is charac-
terized by low bacterial diversity, increased relative abundance 
of Enterobac teriaceae (e.g., Klebsiella, Enterobacter), a 
paucity of Bifidobac terium, and enrichment of antibiotic 
resistance genes.4,39,44-46) The gut microbiome of preterm 
infants is often dominated by only a few bacterial species.47) 
The altered develop ment of the microbiome of preterm versus 
full-term infants is likely due to a number of factors including 
frequent antibiotic exposure, the neonatal intensive care unit 
environment, delays and interrup tions in the establishment 
of enteral feedings, and immaturity of the gut and immune 
system. In contrast to full-term infants, birth mode does 
not appear to have a strong influence on the microbiome of 
preterm infants.36,44,45)

The composition of the preterm infant microbiome also 
varies by postmenstrual age (PMA; birth gestational age plus 
chronolo gic age). At an early PMA, the microbiome of preterm 
in fants is dominated by Staphylococcus and Enterococcus, 
followed by a transition to dominance by Enterobactericeae 
(e.g., Klebsiella, Escherichia), follow ed by an increase in the 
abundance of Clostridium, Veillonella, and other anaerobes 
and a late emer gence of Bifidobacterium.12,13,35,45) This pre-
dictable progression suggests that host developmental pro-
cesses influence the assembly of gut microbial communities. 
For example, post natal maturation of bile acid synthesis and 
the enterohepatic cycle contributes to the development of 
the intestinal microbiome in neonatal mice.48) Interactions 
between microbes also contribute to the microbiome de-
velopment in preterm infants. For ex ample, inhibitory inte-
ractions between Klebsiella, Enterococcus, Staphylococcus, 
and Candida may drive the ordered succession of these 
organisms in the preterm infant gut.36)
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3. Antibiotics
Antibiotics disrupt the richness, diversity, and stability 

of the infant microbiome.37,44,49,50) In preterm infants, 
antibiotic use is associated with enrichment of antibiotic 
resistance genes in the microbiome and disruption of multi-
ple functional metabolic pathways including short-chain 
fatty acid production.44,51) Ma ternal antibiotic exposure 
may also influence the infant’s micro biome. For example, 
intrapartum antibiotic administration is associated with 
lower bacterial diversity, a lower relative abun dance of 
Bifidobacteriaceae, and an increased relative abundance 
of Proteobacteria in the exposed versus unexposed infant’s 
intestinal microbiome.52)

4. Diet
Diet has strong influence on the infant microbiome.1,7) 

Human milk contains multiple bioactive factors that in-
fluence the micro biome, including immunoglobulins and 
HMOs.53,54) HMOs are abundant structurally diverse sugar 
chains in human milk. HMOs are indigestible by the infant 
and reach the lower inte stinal tract intact. Bifidobacterium 
and Bacteroides encode the enzymes necessary to break 
down HMOs and generally become the most abundant 
bacterial genera in the infant micro biome. While exclusively 
breastfed infants have lower diversity and higher relative 
abundances of certain Bifidobacterium and Lactobacillus 
spp., nonexclusively breastfed infants have higher rela-
tive abundances of other taxa including Bacteroides and 
Eubacterium.1,7,55) In one study, even brief formula supple-
men tation among otherwise exclusively breastfed infants 
during the postnatal hospitalization was associated with 
lower relative abundance of Bifidobacteriaceae at 3–4 
months of age compared to exclusively breastfed infants not 
exposed to supplemental formula.55)

Formula type may also influence the microbiome. For ex-
ample, the microbiomes of infants fed soy formula or lactose-
reduced formula supplemented with corn syrup solids have 
increased relative abundance of Lachnospiraceae.8,56) Pre   -
term infants who are fed pasteurized donor human milk 
have altered microbiome profiles compared to those fed 
their mother’s own milk, including a lower relative abun-
dance of Bifidobacteriaceae.57,58) Diet also affects the me-
tabolic capacity of the gut micro biome. For example, the 
microbiomes of breastfed versus for mula-fed infants are 
enriched in multiple amino acid synthesis pathways.8) In 
later infancy, the cessation of breastfeeding is associated 
with a shift toward an adult-like composition includ ing 
increased abundance of Roseburia, Bilophila, Clostridium, 
Bacteroides, and Anaerostipes as well as an enrichment of 
the genes required for fiber degradation.1)

Beneficial effects of microbiome on infant 
development

The microbiome has a broad range of effects on infant de-
velopment, including roles in immunity, growth, meta bolism, 
and neurodevelopment.9,59-63) These effects occur through 
direct interactions of the microbiome with the host’s immune 
system at the skin and mucosal interfaces as well as through 
the production of bioactive metabolites by the microbiome 
that are absorbed into the circulation.19,61,63,64) The infant’s 
immune system and gastrointestinal tract de velop upon 
close interaction with the microbiome. Evidence from stud-
ies of germ-free animals reared in a sterile environment 
demonstrated the importance of the micro biome for normal 
intestinal and immune development. Germ-free rodents 
have enlarged ceca, reduced gastrointestinal motility, altered 
intestinal epithelial cell morphology including longer villi 
and shorter crypts, and structural and functional deficits 
in immune development.9,65-67) Multiple studies reported 
a sensitive period in early life during which certain aspects 
of immune development are uniquely influenced by the 
micro biome, and perturbations of the microbiome during 
this period may have lasting health consequences.16,18,19,68,69) 
Similarly, metabolic programming is uniquely influenced 
by the micro biome during early life, and disruption of the 
maternal and infant microbiomes may increase an indi-
vidual’s susceptibility to later metabolic diseases in cluding 
obesity.15,17,70,71)

The codevelopment of the microbiome, gastrointestinal 
tract, and immune system also influence physical growth in 
infancy. Young germ-free mice demonstrate slower weight 
gain, length gain, organ and bone growth as well as great-
er weight loss during periods of malnutrition than mice 
raised with a conventional microbiome, demonstrating 
the impor tance of the microbiome for supporting early life 
growth.60) Germ-free mice have lower circulating levels of 
insulin-like growth factor 1 (IGF-1) and growth hormone 
sensitivity in the peripheral tissues than those raised with 
a microbiome.60) In a mouse model of malnutrition, a select 
Lactobacillus plantarum strain was sufficient to increase 
IGF-1 production and sustain postnatal growth through 
a mechanism involving the interaction between its cell 
wall com ponents and the pattern recognition receptor nu-
cleotide-binding oligomerization domain–containing-2 in 
the intestinal epithe lium.61) In human infants and children, 
malnutrition is associated with persistent immaturity in 
the intestinal microbiome.14) Transferring fecal bacteria 
from children with malnutri tion to germ-free mice recapi-
tulates phenotypic features of malnutrition in the animals, 
supporting a causal role of the microbiome in malnutrition.59) 
A dietary intervention designed to modulate the microbiome 
of children with malnutrition to a composition similar to 
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that of healthy children improves growth and nutritional 
biomarkers, demonstrating the potential ability of micro-
biome-targeted therapies to improve growth and nutrition 
in early life.72)

The commensal gut microbiome excludes pathogens 
from the gut and protects the host from infection through 
a phenomenon known as colonization resistance. There are 
multiple mecha nisms of colonization resistance, including 
outcompeting patho gens for space and nutrients, bacterial 
secretion of antimicrobial peptides, and stimulation of the 
host immune system.73) The relatively low bacterial diversity 
and increased luminal oxygen availability in the neonatal 
gut may impair the colonization resistance of the neonatal 
microbiome and increase susceptibility to pathogen inva-
sion and sepsis.74-76) Colonization resistance may be further 
impaired following disruption of the microbiome by anti-
biotic use.74)

Microbiome-targeted therapies to improve 
infant health

Given the importance of the microbiome to infant health, 
there is high interest in understanding the best practices to 
support healthy microbiome development. Antimicrobial 

stewardship and breastfeeding support are sample practices 
that optimize the microbiome and improve infant health. 
Other microbiome-targeted interventions may include the 
administration of live bacteria (probiotics) or select nutrients 
that promote the growth of beneficial bacteria (prebiotics). 
Microbiome-targeted therapies have proven effective at 
reducing the incidence of NEC and sepsis, major causes of 
morbidity and mortality in infants (Table 2).

While the pathogenesis of NEC is not fully understood, 
interactions between an abnormal microbiome with the 
imma ture gut and immune system of preterm infants 
are central to its pathogenesis. Prolonged antibiotic use is 
associated with an increased risk of NEC, while breastfeed-
ing is protective.77,78) Breastmilk contains multiple bioactive 
components including HMOs and immunoglobulin A that 
likely contribute to its protective effects against NEC.53,79) 
NEC is commonly preceded by a bloom in the relative 
abundance of Proteobacteria in the fecal microbiome.10) 
Meta-analyses of randomized trials support that probiotics 
significantly reduce the risk of NEC and mortality in 
preterm infants (Table 2).80-82) Further, observational stud-
ies support the effectiveness of probiotics in clinical prac-
tice.83,84)

Sepsis is a major cause of morbidity and mortality in both 
full-term and preterm infants. A randomized controlled trial 

Table 2. Studies of probiotics for neonatal diseasesa)

Study Description No. of studies and infants Results for effect of probiotic and/or 
synbiotic treatment vs. control

Systematic reviews and meta-analyses
Sharif et al.82) 
  2020

Included RCTs and quasi-RCTs of probiotics 
for infants born <32 weeks’ gestation and/
or <1,500 g

56 Trials with 10,812 infants NEC: RR, 0.54; 95% CI, 0.45–0.65
Mortality: RR, 0.76; 95% CI, 0.65–0.89
Late-onset invasive infection: RR, 0.89; 95% CI, 0.82–0.97

Dermyshi et al.80) 
  2017

Included RCTs and observational studies of 
probiotics for infants born <34 weeks’ 
gestation and <1,500 g

30 Trials with 8,622 infants 
and 14 observational 
studies with 13,779 infants

Severe NEC: RR, 0.57; 95% CI, 0.47–0.70 in RCTs, RR, 0.51; 95% 
CI, 0.37–0.70 in observational studies

All-cause mortality: RR, 0.77; 95% CI, 0.65–0.92 in RCTs, RR, 
0.71; 95% CI, 0.62–0.81 in observational studies

Late-onset sepsis: RR, 0.88; 95% CI, 0.80–0.97 in RCTs, RR, 
0.81; 95% CI, 0.69–0.96 in observational studies

Sawh et al.81) 
  2016

Included RCTs of probiotics for infants born 
<37 weeks’ gestation and/or <2,500 g

42 Trials with 10,520 infants Severe NEC: RR, 0.53; 95% CI, 0.42–0.66
All-cause mortality: RR, 0.79; 95% CI, 0.68–0.93
Culture-proven sepsis RR, 0.88; 95% CI, 0.77–1.00

Rao et al.86) 
  2016

Included RCTs of probiotics for infants born 
<37 weeks’ gestation and/or <2,500 g

37 Trials with 9,416 infants Late-onset sepsis: RR, 0.86; 95% CI, 0.78–0.94

Large randomized, controlled trials
Costeloe et al.87) 
  2016

RCT of probiotics (Bifidobacterium breve) 
for infants born 23–30 weeks’ gestation

1,315 Infants Late-onset sepsis: RR, 0.97; 95% CI, 0.73–1.29
NEC ≥stage 2: RR, 0.93; 95% CI, 0.68–1.27
Mortality: RR, 0.93; 95% CI, 0.67–1.30

Jacobs et al.88) 
  2013

RCT of probiotics (Bifidobacterium infantis, 
Streptococcus thermophilus, and Bifido-
bacterium lactis) for infants born <32 weeks’ 
gestation and <1,500 g

1,099 Infants Late-onset sepsis: RR, 0.81, 95% CI, 0.61–1.08
NEC: RR, 0.46, 95% CI, 0.23–0.93
Mortality: RR, 0.97, 95% CI, 0.58–1.62

Panigrahi et al.85) 
  2017

RCT of synbiotic (Lactobacillus plantarum 
plus fructooligosaccharide) for infants 
born ≥35 weeks and ≥2,000 g

4,556 Infants Sepsis and death: RR, 0.60; 95% CI, 0.48–0.74
Culture-positive sepsis: RR, 0.22; 95% CI, 0.09–0.53
Culture-negative sepsis: RR, 0.53; 95% CI, 0.30–0.92
Lower-respiratory tract infection: RR, 0.66; 95% CI, 0.51–0.88

RCT, randomized controlled trial; NEC, necrotizing enterocolitis; RR, relative risk; CI, confidence interval.
a)Table includes a selection of relevant studies; not all published studies are included.
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of an oral probiotic and prebiotic preparation (Lactobacillus 
plan tarum plus fructooligosaccharide) in 4,556 term infants 
in rural India showed a striking reduction in the primary 
outcome of sepsis and death in the treatment arm.85) The 
risk of lower-respiratory tract infections was also reduced 
among infants in the treatment group. Probiotics have been 
shown to reduce the risk of late-onset sepsis in preterm 
infants.86) These studies demon strate the promise of micro-
biome-targeted therapies to reduce infant morbidity and 
mortality rates.

Conclusion

The microbiome has a key role in health and development 
during infancy. Its composition and function are influenced 
by environmental exposures throughout infancy. Interven-
tions to promote healthy microbiome development have 
already proven effective for multiple diseases that affect 
infants, but the discovery of other means to optimize 
microbiome development in early life has great potential to 
improve health outcomes across the lifespan.
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