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Review article

Endocrine-disrupting chemicals (EDCs) are natural or 
synthetic chemicals that mimic, block, or interfere with 
the hormones in the body. The most common and well-
studied EDCs are bisphenol A, phthalates, and persistent 
organic pollutants including polychlorinated biphenyls, 
polybrominated diphenyl ethers, per- and polyfluoroalkyl 
substances, other brominated flame retardants, organo-
chlorine pesticides, dioxins, and furans. Starting in em-
bryonic life, humans are constantly exposed to EDCs 
through air, diet, skin, and water. Fetuses and newborns 
undergo crucial developmental processes that allow adap-
tation to the environment throughout life. As develop ing 
organisms, they are extremely sensitive to low doses of 
EDCs. Many EDCs can cross the placental barrier and 
reach the developing fetal organs. In addition, newborns 
can be exposed to EDCs through breastfeeding or for-
mula feeding. Pre- and postnatal exposure to EDCs may 
increase the risk of childhood diseases by disrupting the 
hormone-mediated processes critical for growth and 
development during gestation and infancy. This review 
discusses evidence of the relationship between pre- and 
postnatal exposure to several EDCs, childbirth, and neu-
rodevelopmental outcomes. Available evidence suggests 
that pre- and postnatal exposure to certain EDCs causes 
fetal growth restriction, preterm birth, low birth weight, 
and neurodevelopmental pro blems through vari ous me-
chanisms of action. Given the adverse effects of EDCs on 
child development, further studies are required to clarify 
the overall associations.
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Key message
· Sensitivity to endocrine-disrupting chemical (EDC) expo-

sure increases during critical developmental periods (in 
embryos, fetuses, and neonates).

· Pre- and postnatal exposure to EDCs is associated with fetal   
growth restriction, preterm birth, and low birth weight.

· Exposure to EDCs during fetal and early postnatal life can 
have lasting and lifelong neurodevelopmental outcomes, 
including autism spectrum, attention deficit hyperactivity, 
and other cognitive and behavioral disorders.

Introduction

A functional endocrine system is required to coordinate 
the actions of the hormones that regulate the body’s phy-
siological and behavioral activities.1) Hormones produced 
by the endo crine glands are transported to target cells to 
regulate body de velopment, growth, reproduction, meta-
bolism, immunity, and behavior by binding to cellular re-
ceptors.2) However, some environmental chemicals, termed 
endocrine-disrupting chemicals (EDCs),3) directly interfere 
with the production, release, binding, transport, and eli-
mination of hormones in the body, thereby altering their 
effects on target cells.4)

The most extensively studied EDCs include bisphenol A 
(BPA) and phthalate, which are plastics and plasticizers. 
Other common EDCs are persistent organic pollutants 
(POPs).4) BPA is an organic chemical used in the manufac-
ture of epoxy resins, polycarbonates, and polyvinyl chloride 
plastics.5) It is widely used in plastic bottles, feeding bottles, 
plastic kitchenware, electronic materials, paints, thermal 
papers, medical and dental materials, and the inner sur-
face coatings of food and beverage cans.6) Phthalates are 
chemicals used in medical and building materials, toys, 
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personal care products, plastic kitchenware, and food packa-
ging.7) POPs, which are pesticides, industrial chemi  cals, and 
byproducts of industrial processes, are orga nic chemicals 
that can persist longer in the environment.8) These include 
polychlorinated biphenyls (PCBs), polybrominated diphenyl 
ethers (PBDEs), per- and polyfluoroalkyl substances (PFAS), 

other brominated flame retardants, organochlorine pesti-
cides (OCPs), dioxins, fu rans, and others.9) EDCs can enter 
the human body through ingestion, inhalation, and dermal 
absorption via leakage into the environment, food, and 
consumer products.4) The sources of exposure to common 
EDCs in humans are listed in Table 1.

Graphic abstract. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental 
outcomes

Table 1. Sources of endocrine-disrupting chemicals
Endocrine-disrupting chemicals Sources

Bisphenol A Contaminated foods and water, plastic bottles, baby bottles, food contact and packaging materials, plastic 
kitchenware, electronic equipments, sport equipments, printing inks, paints, thermal papers, medical and dental 
materials

Phthalates Contaminated foods and water, food contact and packaging materials, plastic kitchenware, shampoo, hair spray, 
perfume, lotion, nail polish and other personal care products, cosmetics, toys, art supplies including paint, clay, 
wax and ink, scented products, medical materials, building materials, wire and cables

Persistent organic pollutants
Polychlorinated biphenyls Contaminated foods and water, adhesives, paints, varnishes, printing inks, carbonless copying paper, newsprint, 

clothing pigments and dyes, old fluorescent light ballasts, lubricants and hydraulic fluids, caulking compounds
Polybrominated diphenyl ethers Contaminated foods and water, flame retardants used in diverse commercial and household products including 

polyurethane foam, plastics, electronics, and textiles
Per- and polyfluoroalkyl substances Contaminated foods and water, fast food packaging materials, candy wrappers, microwave bags, waterproof 

clothings, nonstick cookware, paints, sealants, varnishes, adhesives, shampoo and other personal care products, 
cosmetics and sunscreens, photography, firefighting foams, stain resistant products, electronics, cleaning 
products, dental floss, insulation of electrical wires, furniture

Organochlorine pesticides Contaminated foods and water, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, dicofol, endrin, 
dieldrin, methoxyclor, lindane, endosulfan, isodrin, isobenzan, aldrin, heptachlor, mirex, chlordane, 
chloropropylate, hexachlorobenzene, toxaphene

Dioxins and furans Contaminated foods and water, diesel vehicles, coal fired utilities, wood burning, crematorium facilities, cement 
forges, forest fires, landfill burning, biochemical and photolytic processes, pulp and paper mills, cement kilns, 
power boilers, municipal waste, hospital waste, hazardous waste, sewage sludge 
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The incidence rates of noncommunicable diseases, par-
ticularly birth defects, autism spectrum disorder (ASD), 
attention deficit hyperactivity disorder (ADHD), asthma, 
obesity, diabetes, and childhood cancers, have increased 
over the last 30 years. There is a growing concern that there 
is a strong association between childhood diseases and 
exposure to industrial chemicals and other environmental 
toxins acting as EDC.10) Pre- and postnatal exposure to 
EDCs can have profound effects on health during infancy, 
childhood, and adulthood by causing irreversible changes in 
differentiated tissues.11) Phthalates, phenols, perfluorinated 
compounds, flame retardants, PCBs, and OCPs can cross 
the placental barrier and reach the developing fetal organs. 
11,12) In addition, newborns may be exposed to EDCs 
through breast feeding and formula feeding as well as in-
halation and dermal absorption.11) The early life stages from 
fertilization to 2 years of age are critical developmental 
windows characterized by the maturation and epigenetic 
programming of neuronal, metabolic, and immune path-
ways as well as endocrine, reproductive, and other systems. 
4) However, sensitivity to EDCs increases during such cri-
tical periods (embryo, fetus, and neonate) because of rapid 
cellular proliferation/differentiation, immature metaboli-
sm, and inadequate detoxification mechanisms.13) Many 
EDCs accu mulate in the adipose tissues because of their 
lipid solubility; therefore, the long-term effects of pre and 
postnatal exposure are observed in later years.14) Thus, this 
review discusses the evidence linking pre and postnatal 
exposure to several EDCs to various childbirth and neuro-
developmental outcomes.

Methods

We searched for publications published between 2018 and 
2023 in PubMed, Google Scholar, and Science Direct using 
some keyword combinations. The following terms were 
used to de scribe exposure: prenatal exposure, postnatal ex-
posure, EDCs, infant, newborn, neonate, pregnancy, BPA, 
phthalates, POPs, PCBs, PBDEs, PFAS, OCPs, dioxins, and 
furans. These terms were matched with the following key-
words describing birth and neurodevelopmental out comes: 
birth outcomes, fetal growth, birth weight, birth length, 
birth size, neurodevelopment, neu rotoxicity, neurobehavior, 
mental development, cognitive de velop ment, psychomotor 
development, language development, ASD, attention deficit, 
and hyperactivity disorder.

1. Birth outcomes
The placenta is considered both a filter for the passage of 

EDCs and an endocrine organ acting as a conduit between 
the mother and fetus to maintain fetal homeostasis. EDCs 

affect pregnancy as direct hormonal agonists/antagonists 
affecting endocrine functions as well as indirectly by dis-
rupting maternal, placental, and fetal homeostasis.15,16) 

Environmental exposure to EDCs impairs placental func-
tion.17,18) The placental barrier is not completely imperme able 
to harmful substances; therefore, exposure to environ mental 
triggers can permanently reprogram normal phy   siological 
responses that affect both intrauterine and post  partum 
life.17) Prenatal exposure to EDCs can result in epigenetic 
changes that alter fetal programming and increase the risk 
of certain noncommunicable diseases in postnatal life as 
suggested by the Developmental Origins of Health and 
Disease hypothesis.19)

Prenatal exposure to EDCs leads to preterm birth, fetal 
intrau terine growth retardation, changes in birth weight 
and size, small-for-gestational-age status, large-for-gesta-
tional-age status, older gestational age, macrosomia, and 
congenital disorders, all of which may have negative con-
se quences.20-23) EDCs can interfere with the insulin-like 
growth factor (IGF) system that is a critical growth regula-
tor in fetal development.24)

The IGF system represents a particularly critical growth 
regulator for fetal development, and EDCs can interfere 
with this system.25) Correlations between in utero exposure 
to EDCs and birth outcomes have been reported in epide-
miological studies, but results are conflicting.26,27) Table 2 
shows the effects of EDCs on birth outcomes.

1) Bisphenol A
BPA is found in human plasma, urine, amniotic fluid, 

follicular fluid, placental tissue, breast milk, umbilical cord 
blood, and adipose tissue.28-30) In utero exposure to BPA can 
affect fetal growth through multiple hormone-mediated 
mechanisms by mimicking estrogen, inhibiting androgen 
production, altering thyroid signaling, and inducing oxi-
dative stress.31-33) A high amount of BPA in trophoblast cells 
during the first trimester of pregnancy reportedly inhibits 
cellular growth and affects deoxyribonucleic acid (DNA) 
methylation.34) However, the effect of prenatal exposure to 
BPA on postnatal growth remains unclear.35)

BPA is transported through the placenta and affects 
placental growth by increasing beta human chorionic gona-
dotropin levels.36,37) BPA can easily cross the placenta and is 
associated with pre term birth.38) At the same time, prenatal 
exposure to BPA may cause disease onset in childhood and 
adulthood by changing fetal epigenetic pro gramming.39) 
Combined prenatal exposure to BPA from dietary and 
nondietary sources (especially when the first-half exposure 
occurs) may contribute to fetal growth restric tion.40-42)

Although in utero exposure to BPA may adversely af-
fect placental development and function and lead to in-
adequate fetal growth and adverse birth outcomes, some 
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meta-analyses reported no association between fetal BPA 
exposure and birth weight, height, or head circumfer-
ence.43-47) No association between fetal exposure to BPA 
and gestational age at birth was also reported.46,47)

Due to concerns about the potential negative effects of 
BPA, it is increasingly being replaced by other bisphenols, 
such as bisphenol S (BPS) and bisphenol F (BPF). However, 
whether these bis phenols have fewer adverse health ef-
fects than BPA remains unclear.48) Higher maternal BPS 
concentrations, particularly in the first trimester, are re-
portedly associated with greater fetal head circumference 
and weight, suggesting that BPS exposure enhances fetal 
growth. In utero BPS exposure affects maternal hormone 
levels, which may affect fetal growth differently de pending 
on time of exposure.49-51) Two studies investigating maternal 
urine BPF concentrations during pregnancy showed an 
inverse relationship with birth weight.32,52) However, other 
studies reported no relationship between BPF exposure 
and birth weight.48,50,53,54) Although fetal growth appears 
to be affected by BPF and BPS exposure, the data remain 
inconsistent.

2) Phthalates
Phthalates cross the placental barrier and impair placen-

tal growth and development.55) Due to its immature meta-
bolism, the fetus is more vulnerable to phthalate metabolite 
exposure during pregnancy. Higher phthalate levels may 
be present in pregnant women, especially through dietary 
changes occurring during pregnancy and the widespread 
use of body care products.56)

Exposure to phthalates during pregnancy reportedly in-
creases the risk of adverse pregnancy outcomes and has 
deleterious effects on the offspring’s health, including 
during adulthood.57,58) High phthalate concentrations in 
pre gnant women may lead to adverse birth outcomes such 
as preterm birth, younger gestational age at birth, sponta-
neous abortion, a shorter anogenital distance, and a smaller 
birth size.59,60)

Various mechanisms have been proposed for the manner 
by which exposure to phthalates affects preterm birth.61) 
One mechanism involves interference with placental func-
tion through trophoblast differentiation and placental 
steroidogenesis, which may increase the risk of preterm birth. 

Table 2. Effects of endocrine-disrupting chemicals (EDCs) on birth outcomes
EDCs Health outcome Potential mechanism

Bisphenol A Restriction of fetal growth
Inhibiting cellular growth
Preventing placental growth
Preterm birth
Onset of diseases in childhood and adulthood

Mimicking estrogen
Inhibiting androgen production
Changing the thyroid signal
Increase in oxidative stress
Increasing β-HCG
Changes in fetal epigenetic programming
Influence of DNA methylation

Phthalates Impairment of fetal growth
Affecting congenital anthropometric measurements 

of the infant

Trophoblast differentiation
Placental steroidogenesis
Increase in some hormone levels
Epigenetic changes
Influence of PPAR activity
Influence of DNA methylation
Increased oxidative stress due to endocrine, placental and 

epigenetic modifications
Polychlorinated biphenyls Increased risk of preterm birth

Major malformations
Changes in fetal growth
Changes in secondary sex ratio
Small-for-gestational-age
Decreased anogenital distance in male newborns
Low birth weight

Disruption of hormonal balance

Polybrominated diphenyl ethers Low birth weight
Decreased birth length
Decreased gestational age
Decreased head circumference

Mimicking thyroid hormones
Placental epigenetic disorder
Altered mRNA expression
Metabolomic disruption

Per- and polyfluoroalkyl substances Preterm birth
Low birth weight
Small-for-gestational-age

Endocrine disruption
Systemic inflammation
Metabolic dysfunction
Placental function
Epigenetic changes

Organochlorine pesticides Intrauterine growth retardation
Increase in birth weight
Obesity
Preterm birth
Low birth weight

Disruption in the endocrine and immune systems
Changes in gene methylation (IGF-2 etc.)

β-HCG, β-human chorionic gonadotropin; PPAR, peroxisome proliferator-activated receptor; IGF, insulin-like growth factor.
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This risk increases in individuals with certain genetic muta-
tions through gene-environment in teractions.62) Evidence 
suggests that maternal exposure to phthalates can increase 
the levels of certain hormones. Another mechanism is that 
in utero exposure to phthalates causes epigenetic changes 
in the placenta, which may affect delivery time.63) Phthalate 
exposure may lead to sex-specific differences by regulating 
peroxisome proliferator-activated receptor (PPAR) activity, 
which affects sex hormone metabolism and functions.64) 
One proposed mechanism by which phthalates and bis-
phenols affect health is by affecting DNA methylation.65) 
Studies examining the relationship between phthalate or 
bisphenol exposure during fetal life and DNA methylation 
in humans have reported inconsistent results. Candidate 
gene studies reported varying associations between fetal 
exposure to phthalates or BPA and DNA methylation of 
the IGF2 gene.66-70) A systematic review and meta-analysis 
reported a positive association of prenatal phthalate 
exposure with preterm birth and a negative association 
with gestational age.71) A recent meta-analysis of 59 studies 
suggested that maternal exposure to phthalates carries an 
increased risk of preterm birth.27,72,73)

Potential endocrine disruptors such as phthalates can 
interfere with hormone activity and affect birth outcomes. 
74,75) Prenatal exposure to low-molecular-weight phthalate 
monoester metabo lites is positively associated with gesta-
tional age and head circumference.76) Exposure to mono-
oxo-isonyl phthalate with high-molecular-weight phthalate 
monoesters reportedly reduces head circumference.77) Ma-
ternal prenatal exposure to high-molecular-weight phtha-
lates is associated with impaired fetal growth and birth 
size.78)

Exposure to phthalate metabolites such as bis (2-ethyl-
hexyl) phthalate (DEHP), diethyl phthalate, dibutyl ph-
thalate (DBP), butyl benzyl phthalate, di-isobutyl phthalate 
(DIBP), and di-isononyl phthalate may cause malfunction.61) 
In a review, ex posure to the most frequently studied 
phthalates, DEHP and its metabolites, was associated with 
reduced birth weight. Ex posed pregnant women show a 
variety of changes reflecting a disruption in normal fetal 
growth with endocrine, placental, and epigenetic modifi-
cations and high oxidative stress, indicators of such dete-
rioration.79) The sex- and trimester-specific effects of DEHP 
exposure on fetal growth and birth outcomes have been 
demonstrated and confirmed in early childhood.80) How-
ever, a recent systematic review and meta-analysis of 22 
longitudinal and 17 cross-sectional studies showed that 
prenatal exposure to DEHP is associated with reduced 
body mass index (BMI) z scores in children.81)

The association of phthalates with birth weight appears 
to be metabolite-dependent. Especially in newborns with 
fetal growth retardation, mono (2-ethyl-5-hydroxyhexyl) 

phthalate and mono (2-ethyl-5-oxohexyl) phthalate urine 
concentrations are associated with IGF2 DNA methylation, 
the main regulator of placental and fetal growth.67,82)

3) Persistent organic pollutants
POPs can cross the placental barrier and enter the fetal 

blood stream.83) Some studies have reported that low-
dose prenatal POP exposure can destroy the developing 
fetal endocrine and immune systems, eventually leading 
to irreversible birth defects such as intrauterine growth 
retardation.84-86) Although their manufacture and use 
have long been banned, these substances are still widely 
distributed in the environment because of their persistence. 
Exposure to various POPs is associated with changes in 
gene methylation, including those of the IGF2 gene.82)

4) Polychlorinated biphenyls
PCBs can cross the placenta and adversely affect fetal 

develop ment.87-89) By disrupting hormonal balance, they can 
cause changes in the secondary sex ratio, increase the risk 
of preterm birth, cause major malformations, and change 
fetal growth.26) In one study, different effects were observed 
according to the degree of chlorination, with low-chlorinated 
PCBs reportedly associated with lower luteinizing hormone 
and testosterone le vels, lower gesta tional age, and smaller 
head circumference.90) In ad dition, prenatal exposure to PCBs 
is associated with an increased risk of low birth weight,91,92) 
small-for-gestational-age status,93,94) and prolonged pre-
gnancy.95,96) High maternal blood PCB concentrations at the 
end of pregnancy are associated with reduced anogenital 
distances in male neonates.97)

5) Polybrominated diphenyl ethers
Chronic exposure to PBDEs in pregnant women can 

have potential adverse effects on the developing fetus. The 
presence of PBDEs in maternal and umbilical cord blood 
suggests that they are transported to the fetus via the 
placental interface.98-100)

The chemical structure of PBDEs is very similar to that 
of thyroid hormones; therefore, they are thought to act as 
thyroid disruptors and influence birth outcomes by affecting 
thyroid homeostasis. By mimicking thyroid hormones, 
PBDEs can disrupt the necessary roles of these hormones in 
fetal growth and development.101-103) The thyroid hormones 
triiodothyronine (T3) and thyroxine (T4) play important 
roles in fetal growth and development during pregnancy; 
therefore, PBDE-induced thyroid disrup tion may have 
downstream effects on birth outcomes. 101,104) PBDE exposure 
is associated with placental epigenetic dysregulation, altered 
messenger ribonucleic acid expression, and metabolomic 
disruptions.105-107) Birth outcomes are extremely important 
indicators of future adult health; therefore, adverse birth 
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outcomes are associated with several adult diseases, inclu-
ding obesity, hypertension, heart disease, diabetes, and 
stroke.108-110)

Animal and human studies have demonstrated an as-
sociation between prenatal PBDE exposure and adverse 
birth outcomes. PBDEs are generally associated with de-
creased birth weight, birth length, gestational age, birth 
weight z scores and head circumference.105,111-113)

6) Per- and polyfluoroalkyl substances
Higher PFAS concentrations are associated with an 

increased risk of low birth weight and preterm birth.114-116) 

According to a recent meta-analysis, epidemiological evi-
dence indicates that PFAS exposure during pregnancy is 
associated with adverse conditions such as preterm birth 
and small-for-gestational-age status. However, some re-
searchers have reported that such exposure has none or an 
inverse relationship. These associations vary with outcomes 
and the specific PFAS studied. Because of the diversity of 
PFAS sources and pathways, PFAS exposure in pregnancy 
occurs globally but differs between countries.117,118)

The biological mechanisms by which PFAS may affect birth 
outcomes are largely unknown, but research has focused 
on potential mechanisms such as endocrine disruption,119) 
systemic inflammation,120) metabolic dysfunction,121) placen-
tal function,122) and epigenetic changes.123)

7) Organochlorine pesticides
Pesticide exposure is a risk factor for growth disorders in 

children living in agricultural areas.124) Prenatal exposure 
to pesticides is associated with increased prematurity and 
preterm birth. Birth weight may be related to height and 
head circum ference.125-127) Conversely, the overall frequency 
of household pesticide exposure reportedly had no effect 
on body weight or height. However, significant associations 
exist between the use of fumigation insecticides and 
reduced body weight and between exposure to pyrethroid 
pesticides and the suppression of neonatal height growth, 
but this finding requires validation in other studies.128)

A recent systematic review found no consistent associa-
tion between prenatal pesticide exposure and birth wei-
ght or height for any pesticide class. Prenatal exposure 
to organochlorine is reportedly associated with birth 
weight; however, the direction of this relationship remains 
unclear, with studies showing both positive and negative 
relationships. Additionally, there is no consistent evidence 
of an association between prenatal pesticide exposure, low 
birth weight, and preterm birth.129) A meta-analysis reported 
that prenatal exposure to organophosphate pesticides was 
weakly associated with birth head circumference but not 
with birth weight or length.130) Exposure to chlordecone, an 
OCP, was reportedly not associated with changes in birth 

weight.131)

In utero exposure to OCPs (dichlorodiphenyltrichloroeth
ane [DDT], dichlorodiphenyldichloroethylene [DDE], and 
hexachlorobenzene [HCB]) may be associated with rapid 
weight gain in infancy132,133) and later in childhood evidenced 
by a higher BMI.134,135) Positive longitudinal as sociations 
have been reported between prenatal exposure to DDT and 
DDE in children and other obesity-related outcomes.136) 
Prenatal DDE and DDT levels were significantly associated 
with increased newborn birth weight for both sexes. DDE 
exposure is positively associated with overweight status 
or a high BMI at 6, 12, or 14 months of age.132,133,137) HCB 
exposure is significantly associated with increased newborn 
birth weight, especially in girls.138)

2. Neurodevelopmental outcomes
Owing to its complex structure, the brain is more sensitive 

to the negative effects of EDC exposure than other organs. 
The hypothalamus, cerebral cortex, and hippocampus, all 
of which are involved in neuroendocrine regulation, are the 
most vulner able regions to EDCs.139) Prenatal exposure to 
EDCs can affect fetal neurodevelopment, mainly th rough 
2 different hormonal pathways. Until the second semester, 
the fetus is dependent on the transplacental transfer of 
maternal thyroid hor mones. Maternal thyroid hormones 
play an important role in fetal brain development during 
the first trimester.140) EDCs may affect the synthesis, bio-
availability, function, and metabolism of thyroid hor mones, 
resulting in neurodevelopmental pro blems in children. 
140,141) The impaired action of thyroid and sex hormones 
can cause neurodevelopmental disorders.140) Postnatal 
EDC exposure is also associated with neu rodevelopmental 
and neurobehavioral problems in child ren; however, the 
mechanism underlying this effect remains unclear. EDCs 
exert neurotoxicity by interacting directly with nuclear 
hormone receptors such as estrogen, androgen, and thy roid. 
EDC exposure can also increase reactive oxygen species 
levels, oxidative stress, apoptosis, and epigenetic changes. 
139) Pre- or postnatal EDC exposure can have lasting and 
lifelong neurodevelopmental outcomes includ ing ASD, 
ADHD, and other cognitive and behavioral disorders.142) 
However, the neurotoxic effects of EDCs are dependent on 
exposure type, duration, timing, frequency, and amount.139) 
Table 3 shows the effects of EDCs on the nervous systems of 
children.

1) Bisphenol A
There is strong empirical evidence that pre and postnatal 

BPA exposure causes long-term behavioral changes in in-
telligence, language skills, depression, anxiety, sexual be-
havior, learning, and memory. An increasing number of 
studies have examined the relationship between pre and 
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Table 3. Effects of endocrine-disrupting chemicals (EDCs) on the nervous system in children 
EDCs Health outcome Potential mechanism

Bisphenol A Spatial learning and memory problems
Decreased IQ
Decreased vocabulary knowledge
Language development problems
Anxiety, depression
Self-control problems
Metacognitive dysfunctions
Aggressive behavior
Emotional symptoms
Peer relationship problems
Internalizing and externalizing problems
Social-communication disorders
Autism spectrum disorder
Attention deficit and hyperactivity disorder

Estrogen receptor agonist/antagonist effects
Thyroid-disrupting effects
Decreased key neurodevelopmental transcription factors 

such as Sox2 and Pax6
Altered neural stem cell proliferation and differentiation
Decreased synaptogenesis and synaptic proteins
Altered synapse structure or development
Oxidative stress

Phthalates Decreased language, verbal-cognitive, communication, 
personal-social, mental and psychomotor development

Decreased IQ
Learning disability
Internalizing and externalizing problems
Somatic complaints
Aggressive behavior
Poor social relationships
Peer relationship problems
Anxiety, depression
Emotional symptoms
Autism spectrum disorder
Attention deficit and hyperactivity disorder

Impaired sex hormones homeostasis
Impaired thyroid hormone homeostasis
Impaired calcium signaling
Impaired lipid metabolism
Altered hippocampal structural and functional plasticity
• Oxidative stress
Impaired thyroid hormone homeostasis
Impaired calcium signaling
Impaired lipid metabolism
Altered hippocampal structural and functional plasticity
• Oxidative stress
Impaired thyroid hormone homeostasis
Impaired calcium signaling
Impaired lipid metabolism
Altered hippocampal structural and functional plasticity
Oxidative stress

Polychlorinated biphenyls Executive dysfunction
Impaired psychomotor coordination
Learning disability
Poor memory
Decreased IQ
Fine motor problems
Decreased language development
Internalizing and externalizing problems
Anxiety, depression
Somatic complaints
Hostility and aggressive behavior
Autism spectrum disorder
Attention deficit and hyperactivity disorder

Decreased Erβ expression
Altered BDNF levels
Affected dopamine and serotonin receptors
Aryl hydrocarbon receptors antagonist effects
Oxidative stress

Polybrominated diphenyl 
ethers

Decreased IQ
Decreased motor skills
Executive dysfunction
Social and language development problems
Lower reading skills
Internalizing and externalizing problems
Self-control problems
Decreased social skills
Somatic complaints
Introverted behaviors
Attention deficit and hyperactivity disorder

Impaired thyroid hormone homeostasis
Impaired calcium signaling
Oxidative stress
Affected several neurotransmitter systems such as gamma-

aminobutyric acid and glutamate
Affected cholinergic nicotinic receptors

Per- and polyfluoroalkyl 
substances

Executive dysfunction
Cognitive dysfunction
Mental development disability
Motor disability
Language and communication disabilities
Internalizing and externalizing problems
Autism spectrum disorder
Attention deficit and hyperactivity disorder

Affected neuronal differentiation
Neuropeptide changes
Changed synaptogenesis
Oxidative stress
Impaired calcium signaling
Affected cholinergic systems
Impaired thyroid hormone homeostasis
Peroxsizome proliferatol activated receptor agonist effect

(Continued)
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postnatal BPA exposure and neurodevelopment.13) One 
study found that prenatal BPA exposure reduced intelligence 
quotient (IQ), verbal comprehen sion, and vocabulary.143) 

In the Odense Child Cohort of mother-child pairs, high-
er prenatal BPA exposure was associated with lower vo-
cabulary and language development scores.144)

There is strong evidence that BPA exposure during criti-
cal developmental windows leads to negative behaviors 
in children. Epidemiological studies have shown that pre- 
and postnatal BPA exposure may increase neurobeha-
vioral problems such as anxiety, depression, self-control 
issues, metacognitive dysfunction, ag gression, emotional 
dysregulation, impaired peer relationships, social-commu-
nication disorders, and internalizing and externalizing 
problems in children.140,143,145-151) Although BPA ex posure 
has potential adverse effects on children’s intelligence and 
behavioral development, the results of these studies differed 
according to child sex and age.143)

Previous studies reported epidemiological evidence of 
an association between maternal BPA exposure and ASD. 
152,153) The fact that urine BPA levels are higher in children 
with autism than in healthy subjects supports these find-
ings.154) In addition, BPA exposure may play a role in the 
development of ADHD by affecting the catecholaminergic 
and serotonergic systems. A meta-analysis of animal and 
human studies noted that early pre- and postnatal BPA 
exposure was significantly associated with increased hyper-
activity.155) Case-controlled, cross-sectional, and longitu-
dinal studies have suggested that ADHD symptoms are 
associated with pre and postnatal BPA ex posure.149,150,156-159)

BPA exposure may affect child neurodevelopment by 
se veral mechanisms. Gonadal hormones play important 
roles in neurodevelopment. BPA is a structural analog of 
estrogen that binds to estrogen receptors (ERs), thereby af-
fecting the balance of sex hormones. Therefore, the effects 
of BPA on neurode velopment in children may be attributed 
to its endocrine-disrupting effects.160) Moreover, BPA af-

fects thyroid function by binding to thyroid receptors and 
subsequently disrupting thyroid hormones, which are 
essential for brain development in children.160) Exposure to 
BPA during critical periods of de velopment initiates a series 
of neurodevelopmental processes that permanently change 
the developing brain.

BPA can downregulate key neurodevelopmental trans-
cription factors such as Sox2 and Pax6 that mediate neural 
stem cell activation and brain development. It may also 
affect neurogenesis by altering neural stem cell proliferation 
and differentiation. The cerebellum, hypothalamus, and 
hippocampus may also be susceptible to the neurotoxic 
effects of BPA. Permanent changes in children’s behavior 
are expected, a finding that is consistent with the impact of 
BPA on these brain regions.161) Other mechanisms include 
reduction in synaptogenesis and synaptic protein expres-
sion, alterations in structural plasticity, and increased 
inflammation and oxidative stress.143,162) Thus, BPA ex-
posure can interfere with normal brain development as well 
as cognitive and behavioral functions.

2) Phthalates
Phthalates may cross the blood-placental barrier and 

adversely affect fetal brain development. Ongoing ph-
thalate exposure during infancy and early childhood may 
contribute to poor long-term neurodevelopmental out-
comes.163) Numerous studies have suggested that phthalate 
exposure during these sensitive periods may be associated 
with altered behavioral, cognitive, and psychomotor out-
comes.164-167) Prenatal phthalate exposure can impair cogni-
tive, social, motor, and emotional development.168) Studies 
conducted in different countries have shown that prenatal 
DEHP, DBP, monobutyl phthalate, dibutyl phthalate, DIBP, 
and butyl benzyl phthalate exposure is associated with 
decreased language, verbal, communication, personal-so-
cial, cognitive, and psychomotor development; lower IQ; 
and learning difficulties during childhood.143,169-173)

Table 3. Effects of endocrine-disrupting chemicals (EDCs) on the nervous system in children (Continued)
EDCs Health outcome Potential mechanism

Organochlorine pesticides Decreased information processing speed
Fine motor problems
Decreased mental development
Decreased psychomotor development
Social-emotional and language development problems
Anxiety, depression and somatization
Aggressive behavior
Hyperactivity and attention problems
Autism spectrum disorder

Impaired thyroid hormone homeostasis
Oxidative stress

Dioxins and furans Decreased cognitive function
Decreased motor function
Decreased learning ability
Social-emotional and language development problems
Autism spectrum disorder
Hyperactivity and attention problems

Aryl hydrocarbon receptors antagonist effects

IQ, intelligence quotient; ERβ, estrogen receptor beta; BDNF, brain-derived neurotrophic factor.
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A recent meta-analysis demonstrated a significant as so-
ciation between prenatal phthalate exposure and psycho-
motor out comes in children.164) However, some authors 
have highlighted the importance of altered sex-specific 
differences in infant and child neurodevelopment.166,174) 
Prenatal phthalate expo sure reportedly contributes to in-
creased internalization and externali zation problems, 
somatic complaints, aggressive behaviors, poor social rela-
tionships, peer relationship problems, anxiety, de pression, 
and emotional symptoms in children.13,142,143,159) In addition, 
the relationship between prenatal and early childhood 
phthalate exposure and children's behavior varies by sex.158)

Early phthalate exposure may affect developmental and 
behavioral outcomes in children; however, the results of 
these studies varied in terms of phthalate metabolites, 
affected brain areas, and sex.143) Prenatal phthalate ex-
posure may be associat ed with ASD, ADHD, and other 
specific behavioral problems.164,165,175,176) In a population-
based birth cohort of 1,064 women in Australia, elevated 
urine phthalate metabolite levels at 36 weeks’ gestation 
were associated with childhood autism.175) A study of 
Norwegian mother-child pairs showed that prenatal ph-
thalate exposure was correlated with the risk of ADHD 
during infancy.176)

Although the biological mechanisms underlying the 
role of phthalates in neurodevelopment remain unclear, 
several studies have proposed possible mechanisms. Ph-
thalates can impair the homeostasis of sex hormones, 
thyroid hormones, calcium signaling, and lipid metabolism. 
Given the role of steroids and thyroid hormones in the 
brain and synaptic development, it is not surprising that 
early phthalate exposure affects children’s cognitive de-
velopment and social competence.177) Sex hor mones are 
essential for neurodevelopment. Progesterone is es sential 
for neurosteroid production, whereas estrogen plays im-
portant roles in brain development and neuroprotection. 
Androgens have crucial biological effects on early prenatal 
brain development and social cognition. Estrogens can 
affect neuroplasticity and neurogenesis in the hippocampus 
by binding to ERs and activating cell signaling pathways. 
Phthalate exposure adversely affects neurodevelopment 
by disrupting sex hormone homeostasis.178) Phthalates are 
thought to primarily affect neuro development by disrupting 
thyroid hormone homeostasis, which is crucial for fetal and 
infant brain development; thus, it can ultimately affect 
children’s cognitive and motor abilities.163)

At the same time, phthalates can reduce dopamine rele-
ase by disrupting the D2 dopamine receptor, tyrosine hy-
droxylase, and calcium-dependent neurotransmitter homeo-
stasis. Nicotinic acetylcholine receptor–mediated calcium 
signaling participates in various neurodevelopmental pro-
cesses. Phthalate metabolites may interfere with calcium 

signaling coupled with nicotinic acetylcholine receptors.143) 
Phthalates may impair functional plasticity within the hip-
pocampus, which plays an important role in learning and 
memory.163) Animal studies have associated phthalate ex-
posure with increased lipid peroxidation, which can lead 
to motor neuron apoptosis and other brain disorders. The 
last mechanism may be that phthalate exposure affects the 
child’s neurodevelopment by causing oxidative stress.173)

3) Polychlorinated biphenyls
PCBs have long been associated with neurological disor-

ders.179) Low-dose PCB exposure during critical periods 
has adverse effects on behavioral, physiological, neurobio-
logical, and cog nitive regulation.13) A comprehensive 
summary of studies published in 1990–2018 stated that 
numerous epidemiological studies revealed negative asso-
ciations between PCB exposure and childhood neurode-
velopment.180) It was concluded that PCB exposure during 
critical developmental periods led to impaired executive 
function and psychomotor coordination; learning disabilit-
ies; poor memory; low IQ; problems with fine motor skills 
such as attention, memory, and writing; and decreased 
language development.179-182) A close negative relationship 
was found between intrauterine PCB exposure and verbal 
and memory scores in 4-year-old children.183) Another 
study found a 3-point decrease in full-scale IQ and a 4-point 
decrease in verbal IQ for each increase in placental PCB 
concentration of 1 ng/g (wet weight).184) Epidemiological 
studies reported that PCBs have adverse effects on inter-
nalizing behaviors, such as anxiety, somatization, and 
depression, as well as externalizing behaviors, such as 
hostility and antisocial tendencies.185,186) PCB exposure 
has adverse effects on children’s psychomotor, learning, 
memory, and neurobehavioral functions.187) Additionally, 
current studies confirmed the association between develop-
mental PCB exposure and ASD and ADHD.185,188-191) In 
one study, cord serum PCB-153 levels were significantly 
associated with increased ADHD behaviors in 8-year-old 
children.192)

The mechanisms through which PCBs exert adverse 
effects on the brain remain unclear.139) The hypothalamus 
appears to be an area of nervous system vulnerability 
to PCBs. PCB exposure during the prenatal period may 
decrease ERβ expression in the anteroventral periventri-
cular nucleus. It can also alter the expression of brain-
derived neurotrophic factor (BDNF) genes in the preoptic 
region of the hypothalamus in a sex-specific manner, 
sug  gesting that prenatal PCB exposure masculinizes 
the brain. Decreased BDNF expression, which regulates 
sensory neuron development, may be the underlying me-
chanism of neurobehavioral disorders.161) PCBs may affect 
dopaminergic and serotonergic receptors, bind to aryl 
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hydrocarbon receptors, interrupt neuroimmune function, 
and increase cytokine pro duction.139)

4) Polybrominated diphenyl ethers
Exposure to PBDEs before and after birth may adversely 

affect children’s cognitive development and motor function. 
Prenatal PBDE exposure may adversely affect cognitive 
func tions associated with a lower IQ,179,193-198) reduced motor 
skills, 194) poorer executive function,199,200) lower social and 
language development,201) and lower reading and attention 
skills.194, 197,202-205) One study found that a 10-fold increase 
in the sum of 4 major PBDE congeners (BDE-47, -99, -100, 
and -153) in maternal serum at 16±3 weeks’ gestation was 
associated with a 6.2-point decrease in reading scores 
in 8-year-old children.197) Similarly, Chao et al.206) and 
Gascon et al.207) reported that postnatal exposure to PBDEs, 
particularly BDE-209, via breast milk potentially delays the 
neurological and mental development of breastfed infants 
aged 0–18 months. Tsai et al.208) also found that BDE-209 
levels in breast milk were significantly negatively correlated 
with cognitive levels in 8- to 12-month-old infants.

Pre- and postnatal PBDE exposure is associated with 
externalizing problems, impaired self-control, and reduc-
ed social skills in childhood.201,202,205,207) However, the 
Shanghai-Minhang Birth Cohort Study showed that pre-
natal PBDE exposure was associated with somatic com-
plaints, introversion, and internalization problems in girls 
and somatic complaints and attention problems in boys.209) 
These results indicate that the effects of PBDE exposure 
on neurobehavioral outcomes may differ by sex. A South 
Korean study reported that mothers exposed to higher 
PBDE levels had higher scores on all ADHD scales.210) A 
study conducted in Norway found a relationship between 
different types of PBDEs in breast milk and ADHD.211)

The mechanisms underlying the neurotoxic effects of 
PBDEs are not fully understood, although it is clear that 
pre and postnatal PBDE exposure affects children’s neu-
rodevelopment. Disruption of thyroid homeostasis is a 
suggested potential mechanism.204) Thyroid hormones 
are involved in myelination, cerebellar de velopment, glial 
cell proliferation, neuronal differentiation, and synapse 
formation.139) As PBDEs have a chemical structure similar 
to that of T4, they may bind to thyroid hormone trans-
port proteins and receptors. Therefore, PBDEs can reduce 
circulating T4 and T3 levels.102) Abnormalities in thyroid 
hormone levels may be responsible for impaired neuro-
development.139) Another potential mechanism involves 
the direct effects of PBDEs on the brain. PBDEs can 
directly affect brain cells by inducing alterations in cellular 
migration and differentiation into neurons and oligoden-
drocytes, interfering with calcium signaling and protein 
kinase C pathways in neurons, and causing oxidative 

stress.204) In addition, PBDE exposure may affect the gam-
ma-aminobutyric acid (GABA) and glutamatergic neuro-
transmitter systems in the frontal cortex and cholinergic 
nicotinic receptors in the hippocampus.102) Since GABA is 
an important neurotransmitter in the brain, its changes 
can interrupt neuronal activity, causing deficits in various 
cognitive processes such as hyperactivity and impulsivity, 
aggressive behaviors, impaired social beha viors, and low 
academic skills.139)

5) Per- and polyfluoroalkyl substances
Evidence from animal and human studies suggests that 

PFAS exposure during early life may have short- and long-
term neurodevelopmental effects.212) Epidemiological stud-
ies re ported that early life exposure to PFAS is as sociated 
with neuro developmental disorders such as executive dys-
function, cognitive dysfunction, motor disabilities, and 
language and communication impairments in children. 
200,212-216) Various studies reported that prenatal PFAS 
exposure is associated with attention de ficits, hyperactivity, 
impulsivity, and altered externalizing and internalizing 
behaviors.217,218) Several hypothetical scenarios suggested 
weak inverse associations between prenatal PFAS exposure 
and ADHD in school-aged children.217,219) Epide miological 
studies reported null,220) positive,221,222) or negative223) as-
sociations between ASD and PFAS exposure.

Several mechanisms have been proposed by which early 
life exposure to PFAS and their mixtures may adversely 
affect childhood neurodevelopment. PFAS affect neuronal 
differen tiation and can alter neuroprotein levels in the 
hippocampus and cerebral cortex, which are important for 
normal brain development.224) Some toxicological studies 
suggested that early PFAS exposure may lead to neurotoxic 
effects by altering synapto genesis, cell death, and reactive 
oxygen species generation.225) Possible mechanisms include 
the impaired expression of calcium-related signaling 
molecules in the hippocampus, changes in the cholinergic 
system, and the disruption of thyroid homeostasis.214) The 
neuroprotective effects of PFAS can also be explained by 
the hypothesis that PFAS appears to be a partial agonist 
of PPARγ, agonists of which effectively attenuate oxidative 
stress, inflammation, and apoptosis in the central nervous 
system.225)

6) Organochlorine pesticides
A growing body of evidence demonstrates a positive 

asso ciation between pre- and postnatal OCP exposure 
and neuro developmental disorders.226) DDT and DDE in 
particular cause neurodevelopmental toxicity by cross-
ing the placental barrier and contaminating the breast 
milk.226,227) The Center for the Health Assessment of Mo-
thers and Children of Salinas study showed that increased 
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prenatal levels of DDT and its breakdown product, DDE, 
affected the neurodevelopmental performance of children 
aged 1–2 years. Higher levels of prenatal DDT exposure 
in particular are negatively associated with information 
processing speed, a possible risk factor for attention and 
learning problems in children.228) The fine motor de-
velopment of boys in Guadeloupe exposed to chlordecone, 
a permanent OCP formerly used in banana plantations, in 
utero was adversely affected.229) Eskenazi et al.194) reported 
that prenatal exposure to DDT and DDE was associated 
with decreased cognitive development in 12- to 24-month-
old infants and impaired psychomotor development in 6- 
to 12-month-old infants. A study of 55 Taiwanese mother-
infant pairs found that higher levels of DDT in breast milk 
were significantly associated with lower performance of 
8- to 12-month-old infants in the cognitive, language, and 
social-emotional domains.230)

Prenatal pesticide exposure has also been associated 
with anxiety, depression, somatization, aggression, hyper-
activity, and behavioral problems.140) One study reported 
that DDE expo sure negatively affected infant attention 
skills within the first 5 days after birth.231) Additionally, 
prenatal exposure to OCPs such as DDT and DDE has been 
associated with developmental delays and a greater risk 
of ASD onset.229) A Finnish prenatal study of autism and 
ASD determined that high maternal serum DDE levels 
correlated with ASD symptoms in infants.232) Roberts et 
al.233) reported an increased risk of ASD in infants whose 
mothers were exposed to DDT during the first trimester 
of pregnancy. The most well-known mechanism involves 
the effects of OCPs on thyroid hormones.234) OCPs can also 
cause oxidative stress and DNA damage, resulting in long-
term effects on neurodevelopment.235)

7) Dioxins and furans
The adverse health effects of dioxin exposure in child-

ren may include negative neurological outcomes.236) Epi-
demiological studies reported that 2,3,7,8-tetrachlorodi-
benzo-p-dioxin (TCDD) exposure was associated with 
subtle neurodevelopmen tal pro blems such as decreased 
cognition, motor, attention, social-emotional, learning, and 
language skills.182,237-239) Autistic traits and poor cognitive 
and motor development have been observed in Vietnamese 
infants born in dioxin-contaminated areas after the 
wartime use of Agent Orange.240) One study observed in-
creased ADHD symptoms in children perinatally exposed 
to more TCDD.241) Dioxins have been suggested to affect 
neuro development via aryl hydrocarbon receptor–mediat-
ed signaling pathways.242)

Conclusions

This review examined the reported findings of birth and 
neurodevelopmental disorders following pre and postnatal 
ex posure to 3 main classes of EDCs: BPA, phthalates, 
and POPs (PCB, PBDE, PFAS, OCP, dioxins, and furans). 
Humans are constantly exposed to EDCs through the 
air, nutrients, and water. By interfering with endocrine 
and neurological patterns, EDCs adversely affect general 
human health, particularly that of children. Humans are 
highly sensitive to EDC exposure during the intrauterine 
and early postpartum periods. Such exposures affect birth 
outcomes through various mechanisms. Birth out comes 
such as fetal growth restriction, preterm birth, and low 
birth weight have been associated with EDC exposure, but 
results from epidemiological studies are conflicting. EDC 
exposure can also cause brain reprogramming by affecting 
behaviors in other areas, such as epigenetics. The time of 
exposure is an important factor in determining potential 
neurodevelopmental outcomes. Previous studies suggested 
that postnatal EDC exposure is associated with adverse 
neurobehavioral outcomes in children. Although possible 
mechanisms of action have been mentioned, the exact 
mechanisms are yet to be elucidated. Precautions should 
be taken to control, prevent, and limit contact with EDCs, 
especially since infants are at greater risk for changes in 
programming and/or malformations during the first 1,000 
days of life.
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