![]() |
Application of CRISPR-Cas9 gene editing for congenital heart disease
Heeyoung Seok, Rui Deng, Douglas B. Cowan, Da-Zhi Wang
Clin Exp Pediatr. 2021;64(6):269-279. Published online 2021 Mar 2 DOI: https://doi.org/10.3345/cep.2020.02096
|
Citations to this article as recorded by
Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases
Mohammad Ali Sheikh Beig Goharrizi, Saeed Ghodsi, Mohammad Reza Memarjafari
Current Problems in Cardiology.2023; 48(5): 101603. CrossRef Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations
Shreya Bhattacharya, Priyadarshi Satpati
ACS Omega.2023; 8(2): 1817. CrossRef Chronic Heart Failure in Children: State of the Art and New Perspectives
Biagio Castaldi, Elena Cuppini, Jennifer Fumanelli, Angela Di Candia, Jolanda Sabatino, Domenico Sirico, Vladimiro Vida, Massimo Padalino, Giovanni Di Salvo
Journal of Clinical Medicine.2023; 12(7): 2611. CrossRef The sum of the parts is greater than the whole: current research models for congenital heart disease
Tahmina Samad, Sean M. Wu
Nature Cardiovascular Research.2023; 2(8): 708. CrossRef CRISPR/Cas9 teknolojisi ve gıda alanında kullanımı
Ayşegül BÖLÜKBAŞ, Ali GÜCÜKOĞLU
Frontiers in Life Sciences and Related Technologie.2022; 3(1): 36. CrossRef Hypertrophic Cardiomyopathy in Infants from the Perspective of Cardiomyocyte Maturation
Heeyoung Seok, Jin-Hee Oh
Korean Circulation Journal.2021; 51(9): 733. CrossRef
|