Efficacy of probiotics for managing infantile colic due to their anti-inflammatory properties: a meta-analysis and systematic review

Running title: Probiotics for treatment of infantile colic

Reza Shirazinia, DVM, PhD¹, Ali Akbar Golabchifar, Pharm.D, PhD¹, Mohammad Reza Fazeli, Pharm.D, PhD²

¹Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
²Pharmaceutical Quality Assurance Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran

Corresponding author

Ali Akbar Golabchifar, Pharm.D, PhD

Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran

Email: aliakbar.golabchifar@gmail.com

https://orcid.org/0000-0001-8729-7406
Abstract

Background: Infantile colic (IC) is excessive crying in otherwise healthy children. Despite vast research efforts, its etiology remains unknown.

Purpose: Most treatments for IC carry various side effects. The collection of evidence may inform researchers of new strategies for the management and treatment of IC as well as new clues for understanding its pathogenesis. This review and meta-analysis aimed to evaluate the efficacy and possible mechanisms of probiotics for managing IC.

Methods: Ten papers met the study inclusion and exclusion criteria, and the meta-analysis was conducted using Review Manager (RevMan) software and a random effects model.

Results: This meta-analysis revealed that probiotics are effective for treating infantile colic, while the review showed that this efficacy may be due to their anti-inflammatory effects.

Conclusion: Probiotics may be an important treatment option for managing infantile colic due to their anti-inflammatory properties.

Keywords: Infantile colic, Cytokines, Meta-analysis, Gastrointestinal inflammation, Probiotics

Key message

Question: Do probiotics reduce colic symptoms?

Finding: Probiotics reduced colic symptoms in colicky infants probably due to the anti-inflammatory properties.

Meaning: Probiotics may be an effective and less noxious way to manage infantile colic.
Graphical abstract

[Diagram showing the relationship between inflammatory markers, gut microbiome dysbiosis, and probiotics administration.]
Introduction

Infantile colic (IC) is a common problem in infancy that induce excessive crying in infants during the first few months of life1,2. IC is characterized by excessive crying at least 3 hours a day on at least 3 days a week for the duration of about 3 weeks leading to parental exhaustion, stress, anxiety and depression3,4. The symptoms of IC peaks at 6 weeks and disappears in the 12 weeks of age5.

Previously studies have indicated IC follow a circadian rhythm of pain starting in the evening6 also the prevalence of colic follow an equal pattern between male and female infants7. The pathogenesis of IC is not well understood. This condition is described as a multifactorial syndrome8. There are some options included in the aetiology of IC such as food allergies to milk proteins, an excessive amount of gas in the intestinal tract and intestinal hormones abnormalities. Recently some studies have declared the role of dysbiosis of microbiota, maternal smoking and hormone alterations as well as gastrointestinal inflammation (GII) for the development of colic9-11. Some studies also indicated a correlation between parental issues and IC such as postpartum depression, parental anxiety, stressful pregnancies, dissatisfaction with the sexual relationship, negative experiences during childbirth, poor parental skills and dysregulation of gut-brain axis7. The global incidence of IC is about 20\%12. This condition makes one in six families to consult a healthcare system about the problem of excessive crying13. Still, there is not any kind of approved medications to fix this problem for instance simethicone failed to show superior characteristics over placebo14,15. Other studies also have shown promising effects of Dicyclomine hydrochloride in the treatment of IC but the incidence of side effects caused it to be contraindicated in infants16.

Very low-quality shreds of evidence describe some other options for the treatment of this condition such as Cimetropium bromide, or Herbal agents. But due to the lack of powerful evidence their administration for IC is not approved comprehensively17). Another option for the treatment of IC may be probiotic supplementation. Probiotics are nonpathogenic live strains of bacteria that when administrated in adequate amounts exert beneficial effects on the host. Prebiotics are substances that promote the growth of probiotic bacteria playing a vital role in the modulation of the gut microbiome. A synbiotic is a combination of synergistically acting probiotics and prebiotics18, 19).

Probiotics consist mostly strains of the genera \textit{Bifidobacterium} and \textit{Lactobacillus}, additionally, strains of Bacillus, Pediococcus and some yeasts can be introduced as suitable candidates. These strains together play an important role in the protection of the host against pathogen microorganisms and also host's immune system strengthen additionally in the maintenance of the intestinal microbial balance as well as anti-inflammatory responses20, 21).

Studies also revealed that low-grade systemic inflammation may be another important etiological factor for IC which is covered by other factors leading to being neglected.11)

Previous studies declared about increased levels of inflammatory cytokines such as interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α) as well as interleukin-6 (IL-6) in the blood of patients experiencing functional gastrointestinal disorders when compared to control group22, 23).

Charles Darkoh et al24) in a study showed significantly higher levels of inflammatory cytokines such as Interferon-gamma (IFN-γ), IL-1β, and TNF-α in the people experiencing gastrointestinal disorders such as irritable bowel syndrome (IBS) moreover the concentration of chemokines such as monocytes chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1β (MIP-1β) and chemokine (C-X-C motif) ligand 16 (CXCL16) was significantly higher in the patients
experiencing gastrointestinal disorders. They also revealed that anti-inflammatory cytokines found to be lower in the patients experiencing gastrointestinal disorders all of them in comparison to control group.

Calprotectin, a marker of colonic inflammation, is increased in infants experiencing colic. Another study revealed that forkhead box P3 (FOXP3), a member of the forkhead transcription factor family, is decreased in colicky infants, which is another indicator of inflammation.

Based on the role of inflammation in functional gastrointestinal disorders, especially colic, it may be hypothesized that reducing inflammation would be a treatment strategy for IC. The present study aims to evaluate the role of probiotics as a treatment option for IC with a brief description of anti-inflammatory roles.
Methods

Inclusion criteria

The studies were included if they were qualified based on the following criteria: (1) expressed a randomized controlled trial (RCT); (2) consisted of a control group and a clinical cohort and the clinical cohort was based on the consumption of probiotics; (3) the scales were described as mean ± standard deviation (SD); (4) the time course for the report of crying time was minute/day; (5) accessibility to the full text and (6) published in a scientific journal.

Exclusion criteria

The studies were excluded if they: (1) did not qualify based on our inclusion criteria; (2) the report of crying time was not in minute/day; (3) the full text of paper was not accessible or the paper was not published in a scientific journal; (4) results were not expressed as means ± SDs.

Search Strategy

This review includes data about the effectiveness of probiotics for the management of infantile colic as well as the role of inflammation in infantile colic and probiotics with anti-inflammatory properties as a therapeutic option for treatment and control of infantile colic until June 10, 2020. Scientific databases such as Web of Science, PubMed, Science Direct, Scopus and Google Scholar were used.

Keywords such as infantile colic, probiotic strains, anti-inflammation, inflammation, cytokines, gastrointestinal inflammation, tumor necrosis factor-alpha (TNF-α), Interferon-gamma (IFN-γ), interleukin-10 (IL-10), interleukin-8 (IL-8), dysbiosis, gut microbiome, fecal calprotectin, breast-fed infants, formula-fed infants, colic symptoms and daily crying as well as their combinations were used. Finally, about 167 articles from 1954-2020 were found that after qualification based on the inclusion criteria and exclusion criteria 10 papers were included in our
meta-analysis. The data for meta-analysis were extracted using a form collection of the dose regimen outcome and the other relative data (Table 1). The articles whose language was not English and the full text was not accessible were excluded.

Statistical Analysis

The analysis was performed using the Review Manager (RevMan) Version 5.4. (The Cochrane Collaboration, 2020. Nordic Cochrane Center, Copenhagen, Denmark). The study outcome variables were described as standard mean differences (SMD) and a random effect based on the heterogeneity between the studies was chosen. We also used I^2 for evaluation of heterogeneity between the studies. If the $I^2 \geq 50\%$, the result was considered to exhibit a significant heterogeneity, and the specific model for evaluation of parameters was the random effect model. The risk of bias for each of the RCTs was evaluated using the Cochrane “risk of risk” assessment tool based on the author's judgments.
Results

A PRISMA flow diagram shows the process in which the studies were included for our meta-analysis. A total of 126 studies were screened and after qualification based on the inclusion and exclusion criteria, a total of 10 papers (including 367 intervention cases and 345 controls, Table 1) were entered the meta-analysis (Fig. 1).

Quality evaluation

The risk of bias among the studies in the meta-analysis using the Cochrane “risk of risk” assessment tool was evaluated based on the author's judgment and the results are presented in Figs. 2A and 2B. As it is obvious the risk of bias among the studies was relatively low. All the studies used probiotics as an intervention and placebo as the control group. In one of the studies, the intervention was not blinded. All other studies were randomized and the intervention was blinded properly.

Efficacy of probiotics in infantile colic:

As it is shown in Fig. 3 the meta-analysis revealed that probiotics effectively reduce the main symptom of infantile colic that is excessive crying. (SMD = -1.98, 95%CI, [-2.74,-1.22])
Discussion

In the present study, we investigated the efficacy of probiotics in the treatment of infantile colic. Our results showed that probiotics can effectively reduce excessive crying in colicky infants. The results of our meta-analysis showed a significant effect of probiotics for the treatment and management of infantile colic. (SMD = -1.98, 95% CI, [-2.74, -1.22]). Evaluation of the risk of bias between the studies showed quite a low risk of bias between the included studies. A random model was chosen for the assessment that’s why the included studies were different in some factors such as age, duration of treatment and also the dose of intervention. It would be more reliable to use a random effect in such a situation.36)

Skonieczna-Żydecka et al. in a meta-analysis showed the efficacy of probiotics for the management of infantile colic. (MD = -2.012, 95% CI [-2.763, -1.261]).37) Another study conducted to evaluate the efficacy of probiotics for reduction of crying time showed that after 4 weeks of treatment probiotics significantly reduced the crying time. (Weighted mean difference (WMD) = -56.32; 95% CI: -89.49 to -23.16; P = 0.001).38) Sung et al. in a study based on the meta-analysis declared that probiotics effectively reduce the crying time in colicky infants. MD = -67.72, 95% CI [-99.79 to -35.64]).39) A meta-analysis composed of 32 RCTs and 2242 patients showed a superior effect for probiotic L. reuteri DSM 17938 when compared to other treatments. (WMD = 51.3 h, 95% CI [-72.2 to -30.5 h], P = 0.001).40) The results of these studies are in concordance with our studies.

Inflammation is a physiologic response protecting cells from various injuries or infections that terminates automatically using endogenous or exogenous anti-inflammatory agents leading to hemostasis in various tissues and organs but when this regulation disrupts the result is uncontrolled inflammation is associated with pathologic conditions especially in the
gastrointestinal tract41, 42. Inflammation remarked by increased Fecal Calprotectin (FC) is associated with IC meanwhile decreased crying is observed in infants with lower levels of FC25, 43, 44. But some studies also failed to show a statistically significant correlation between fussing, crying and FC4, 45.

Researches declared that FC may be influenced through the various source of infantile feedings such as formula or breastfeeding. Formula-fed infants usually indicate lower levels of FC but FC is increased in breastfed infants, after all, some studies indicated that regardless of the source of feeding increased FC is associated with IC25, 26, 46. FC is increased in various inflammatory diseases such as inflammatory bowel diseases (IBD) and can be used for assessment of the inflammatory situation in these patients also some other studies expressed that FC is an indication of granulocyte migration through the gut wall47-50. Increased intestinal permeability is found in various inflammatory situations in the gastrointestinal tract and the studies have observed a significant correlation between Calprotectin and intestinal permeability as a consequence of transepithelial granulocytes migration and inflammation50. There are some studies about absorption of macromolecules during IC indicating increased intestinal permeability during this situation these may reflect inflammatory situations during colic51-54.

IC also induces alterations in other components of immune system profile such as MIP-1\textbeta, MCP-1/CCL2 and Interleukin-8 (IL-8) that was significantly higher in the serum of infants experiencing colic additionally the serum concentration of TNF-\alpha looks to be higher in the colicky infants notably indicating a systemic inflammation involved in it11, 55-57.

As we all know immune system composed of two major components including innate and adaptive immune systems that Probiotics can exert various effects in both of them this may inform about the role of probiotics in inflammation that is shown in previous studies too58-61.

11
Probiotics are well known for their role in inflammation partly due to their effect to reduce the FC and/or fecal lactoferrin (FL) indicated by different studies26, 62, 63.

Jonathan Santas showed that Treatment with probiotics \textit{pediococcus pentosaceus} CECT 8330 and \textit{bifidobacterium longum} CECT 7894 is associated with increased interleukin-10 (IL-10) production along with the significant reduction of crying time in infants with excessive crying64. As it is obvious we all know the anti-inflammatory roles of IL-10 in the pathogenesis of various diseases65.

Administration of \textit{Lactobacillus reuteri} DSM 17938 significantly increased the values of Foxp3+ T cells in the ileum besides this probiotic decreased the percentage of these cells in the mesenteric lymph nodes in a rat model of Necrotizing enterocolitis66.

Additionally, this probiotic strain also reduced the ratio of retinoid-related orphan receptor-γ (RORγ)/ Foxp3 messenger RNA levels due to significant increment of Foxp3 mRNA levels leading to the significant reduction of crying time in colicky infants as a result of modulation of T cells functions26.

Foxp3+ regulatory T cells (Tregs) are known to be associated with maintenance of gut homeostasis, control of inflammation, inducing tolerance and also anti-inflammatory properties67, 68. These pieces of evidence also highlight the Immunomodulatory/anti-inflammatory roles of probiotics, especially in IC.

\textit{Lactobacillus reuteri} DSM17938 administration at a dose of 10^8 CFU in 28 days significantly increased the CC-chemokine receptor 7 in infants whose crying time was reduced. CC-chemokine receptor 7 is a homeostatic chemokine receptor that modulates leukocyte trafficking, induces and also silences inflammation between the peripheral tissues and the lymphoid tissue30, 69.

\footnotesize

12

\normalsize
The efficacy of probiotics for management of infantile colic is also summarized in the Table 2. Administration of probiotics also have shown anti-inflammatory effects in other models of inflammatory gastrointestinal disorders for instance: Yuying Liu performed a study on probiotics all of which revealed anti-inflammatory effects through various approaches for instance: *Lactobacillus reuteri* strains (ATCC PTA 4659, 5289, and 6475) significantly reduce Lipopolysaccharides(LPS) induced IL-8 production in IPEC-J2(intestinal porcine enterocytes) cell line(obtained from the jejunal epithelium of a neonatal piglet). Incubation of rat intestinal epithelial cell line IEC-6(Intestinal Epithelioid Cell)(obtained from the rat crypt) with LPS significantly increased cytokine-induced neutrophil chemoattractant-1 (CINC-1) (equivalent to IL-8) but *Lactobacillus reuteri* strain 4659 significantly reduced CINC-1 as a marker of anti-inflammatory effects of probiotics. Probiotics also exert anti-inflammatory effects in vivo. Keratinocyte Chemoattractant (KC)/ Growth-Regulated Oncogene (GRO) (Cxc11 or CINC-1) (an inflammatory indicator with similar function to human IL-8) in Ileal tissues lysates were significantly increased after LPS administration in newborn rat pups but *Lactobacillus reuteri* strains ATCC PTA4659, DSM17938, ATCC PTA 6475, and ATCC PTA 5289 significantly reduced this ratio. The ratio of KC/GRO also expresses an activated Nuclear factor kappa-B (NF-κB) pathway which promotes the production of inflammatory cytokines. So reduced KC/GRO is proof for anti-inflammatory effects of probiotics. Further investigations on the anti-inflammatory effects of probiotics results in revealing the role of probiotics on the expression of type 1 and 2 T helper(Th1 and Th2) cytokines in the rat intestine. Cytokines associated with Th1 include: IFN-γ, TNF-α, and IL-1β meanwhile Th2-type cytokines include Interleukin-4 (IL-4), Interleukin-5(IL-5), and Interleukin-13 (IL-13) in the rat intestine. *Lactobacillus reuteri* strains (ATCC PTA4659, DSM17938, ATCC PTA 6475, and ATCC PTA
5289) significantly reduced the LPS induced mRNA overexpression of IFN-γ. The levels of TNF-α or IL-1β were significantly decreased by various strains of probiotics. *Lactobacillus reuteri* ATCC PTA 4659 and 5289 significantly decreased LPS induced TNF-α production additionally *Lactobacillus reuteri* DSM 17938 and ATCC PTA 6475 induce significant decrement of IL-1β. It was also observed that *Lactobacillus reuteri* strain DSM 17938 or ATCC PTA 4659 significantly downregulate the mRNA level of IL-13 in the intestine when compared to the group treated with LPS. Inhibition of IL-4 and IL-5 overproduction due to LPS treatment was observed by *Lactobacillus reuteri* strain DSM 17938. All of these cytokines are involved in the pathogenesis of various GIIs. The results suggested above is indications of in vivo and in vitro anti-inflammatory effects of probiotics too.

Increased TNF-α is associated with IC as described previously meanwhile administration of specific *lactobacillus reuteri* strains such as ATCC PTA 6475 and ATCC PTA 5289 can decrease TNF-α production in the monocytoid THP-1 cells. Yea Ping Lin et al in their study showed that *Lactobacillus reuteri* strain ATCC PTA 6475 potentially decrease the LPS-induced increment of TNF-α in Monocytes and primary monocyte-derived macrophages isolated from children experiencing Crohn's disease. The chemokine MCP-1/CCL2 was also reduced in macrophages of children received this strain of probiotic who were experiencing alleviation. Paul C. Scully et al in a study showed that *Bifidobacterium infantis* 35624 possess the ability to significantly reduce Peyer’s patch macrophage inflammatory protein 1α (MIP-1α) and MIP-1β secretion induced by salmonella infection that is partly due to increased Peyer’s patch CD4+CD25+ regulatory T cells.

Another study showed that the Supplementation of ageing mice with *Lactobacillus acidophilus* DDS-1 modulated the gut microbiome community and significantly reduced the serum levels of
MIP-1β when compared to the control group76. As described previously increased MIP-1β in serum is associated with IC.

Two strains of probiotics \textit{Lactobacillus reuteri} DSM 17938 and ATCC PTA 4659 were investigated for their Immunomodulatory effects in LPS induced ileitis in rats, the results of this study showed anti-inflammatory effects of probiotics evidenced by significant downregulation of TNF-α, IL-6, toll-like receptor-4 (TLR-4), and NF-κB as well as significant up-regulation of IL-10. As described previously TNF-α, IL-6, TLR-4 and NF-κB are markers of the inflammatory situation and IL-10 is a potent anti-inflammatory cytokine which all of them announce probiotics as anti-inflammatory and immunomodulatory agents77. Probiotics especially \textit{Lactobacillus reuteri} has shown the potency against pro-inflammatory cytokine TNF-α production in mice experiencing colitis78 leading to reduced IL-8 production79.

Another study showed that IL-10 deficient mice exhibited lower levels of colonic \textit{Lactobacillus sp}. And normalizing the levels of this probiotic reduce colonic mucosal adhereent leading to alleviation of statues in colitis80.

The gut microbiome is one important factor for protecting the gastrointestinal tract from various pathogenic conditions, the imbalanced gut microbiome is associated with various pathogenic situations especially colic81, 82. Some studies also declared that dysbiosis of the gut microbiome is associated with inflammation which is observed in IC too11, 25. The gut microbiome is known to produce some products such as short-chain fatty acids that perform anti-inflammatory and Immunomodulatory effects. Microbiome community in the gut also exert Immunomodulatory functions not only in the gastrointestinal tract but also in wider aspects such as systemic immune disorders83-85. So
balanced gut microbiome is an important issue in the pathogenesis of IC which should be specially taken into consideration.

There is a lot of studies about protecting the roles of probiotics against gut microbiome dysbiosis86-88 This also highlights the anti-inflammatory roles of probiotics in the gastrointestinal tract.

In conclusion, some specific strains of probiotics exert desirable efficacy for treatment of IC through multiple therapeutic ways including anti-inflammatory roles. Preservation of gut microbiome homeostasis is another therapeutic role accomplished by probiotics. the complicated base of IC with limitations in the treatment and diagnosis may introduce specific strains of probiotics as a new therapeutic strategy for the management of this burden.
Acknowledgement

Hereby, it would give us great pleasure to thank all researches whose articles were used in this study! The authors declare that there is no conflict of interest.

Funding

This study is not supported by a funding source.

Conflict of interest

The authors declare that there is no conflict of interest.

ORCID

Reza Shirazinia https://orcid.org/0000-0003-4002-4712
Ali Akbar Golabchifar https://orcid.org/0000-0001-8729-7406
Mohammad Reza Fazeli https://orcid.org/0000-0002-6692-5028

18. FAO W. Guidelines for the evaluation of probiotic in food. 2002.

Table 1. Clinical trials included in the meta-analysis

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(Reference)</th>
<th>Type of study</th>
<th>Probiotic strain (Dose)</th>
<th>Duration of treatment</th>
<th>Population and type of feeding</th>
<th>Age</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kianifar et al 28)</td>
<td>A randomised controlled trial</td>
<td>Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium infantis, Lactobacillus bulgaricus and</td>
<td>30 days</td>
<td>BF infants</td>
<td>(15–120 days)</td>
<td>Significant improvement of colic symptoms in the probiotics group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fructooligosaccharide (10^8 CFU/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pärty et al^4^</td>
<td>double-blind placebo-controlled intervention trial</td>
<td>LGG (4.5 × 10^9 CFU/day)</td>
<td>28 days</td>
<td>30 BF and FF infants (34.8-38 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The parents declared about the protective role of probiotics in infantile colic but the results of the evaluation of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mi et al(^{29})</td>
<td>A placebo controlled observational randomized study</td>
<td>Lactobacillus reuteri DSM 17938 ((10^8) CFU)</td>
<td>21 days</td>
<td>42 BF infants (less than 4 months)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% treatment success in the probiotic group, Significant reduction of mean crying time, maternal depression and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>crying time were not significantly different between placebo and probiotics group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Savino et al30</td>
<td>Randomized clinical trial</td>
<td>\textit{Lactobacillus reuteri} DSM17938 (1 × 108 CFU/day)</td>
<td>28 days</td>
<td>50 BF infants</td>
<td>(<50 days)</td>
<td>significant increment of maternal satisfaction.</td>
</tr>
</tbody>
</table>

Probiotics treatment significantly reduced crying time partly due to the increased expression of CC-chemokine receptor 7. Meanwhile, there was no significant
difference in the experimental groups in term of IL-10.
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Gerasimov et al(^{31})</td>
<td>phase II randomized parallel group prospective controlled multi-center dietary study.</td>
<td>Lactobacillus rhamnosus 19070-2 and Lactobacillus reuteri 12246 (125 × 10⁶ CFU/day), vitamin D3(200 IU/day), fructooligosaccharides (FOS)(3.33 mg/day)</td>
<td>28 days</td>
<td>168 BF infants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sung et al(^{32})</td>
<td>Double blind, placebo controlled randomised trial.</td>
<td>Lactobacillus reuteri DSM 17938 (1×10⁸ CFU/day)</td>
<td>30 days</td>
<td>167 BF or FF infants</td>
</tr>
<tr>
<td>No.</td>
<td>Study</td>
<td>Intervention</td>
<td>Probiotic</td>
<td>Load</td>
<td>Duration</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>Savino et al. 26)</td>
<td>A double-blind, placebo-controlled randomized trial</td>
<td>Lactobacillus reuteri DSM 17938 (1 × 10^8 CFU/day)</td>
<td></td>
<td>30 days</td>
</tr>
</tbody>
</table>
Increased lactobacillus and reduced fecal calprotectin were observed in the probiotic group.

<p>| 8 | Waseem Ashraf et al. 33 | A non-blinded randomized controlled trial | Lactobacillus reuteri (10^8 CFU/day) | 7 days | 90 BF infants | (21-90 days) | Improvement of colic symptoms was associated with the probiotic consumption. |</p>
<table>
<thead>
<tr>
<th>9</th>
<th>Enza et al 34)</th>
<th>A Pilot, Controlled, Randomized, and Double-Blind Study</th>
<th>Bifidobacterium breve B632 and BR03 (5cc/10^8)</th>
<th>90 days</th>
<th>60 FF and BF infants</th>
<th>Significant reduction of the mean crying time in the probiotic group was observed after treatment for 3 months.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Baldassarre et al35)</td>
<td>a double-blind, randomized, placebo-controlled clinical trial</td>
<td>Lactobacillus paracasei DSM 24733, Lactobacillus plantarum DSM 24730, Lactobacillus acidophilus DSM</td>
<td>21 days</td>
<td>62 BF Infants</td>
<td>(30 - 90 days)</td>
</tr>
<tr>
<td>24735, Lactobacillus delbrueckii subsp. bulgaricus DSM 24734, Bifidobacterium longum DSM 24736, Bifidobacterium breve DSM 24732, Bifidobacterium infantis DSM 24737, and Streptococcus thermophilus DSM 24731 (5×10⁹ CFU/day)</td>
<td>treatment was observed in the probiotic group. No significant difference were observed regarding bowel movements, microbiota composition or stool consistency.</td>
<td>BF, breast-fed; FF, formula-fed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Anti-inflammatory properties of probiotics with efficacy proven in clinical trials

<table>
<thead>
<tr>
<th>Single strain</th>
<th>Anti-inflammatory marker</th>
<th>Dose (duration)</th>
<th>Probiotic combination</th>
<th>Anti-inflammatory marker</th>
<th>Dose (duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus reuteri DSM 17938*</td>
<td>Increased CC chemokine receptor 730, increased FOXP3 mRNA levels26 and reduced fecal calprotectin89</td>
<td>10^8 CFU/day (21 and 28 days)</td>
<td>Lactobacillus rhamnosus 19070-2 and Lactobacillus reuteri 12246*</td>
<td>Reduced intestinal permeability90</td>
<td>$(125 \times 10^6$ CFU/day) (28 days)</td>
</tr>
<tr>
<td>Lactobacillus reuteri (American Type Culture Collection(ATCC) strain 55730)</td>
<td>-</td>
<td>10^8 CFU/day (28 days)</td>
<td>Bifidobacterium lactis Bb 12 and Streptococcus thermophilus,</td>
<td>Reduced fecal calprotectin as well as increased fecal IgA due to Bifidobacterium</td>
<td>10^7 and 10^9 CFU/g 240 ml of solution per day</td>
</tr>
<tr>
<td>Probiotic Strain</td>
<td>Dose and Administration</td>
<td>Efficacy</td>
<td>COMparision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus HA122</td>
<td>1×10^9 twice a day (28 days)</td>
<td>maintenance of mucosal barrier and reduced intestinal permeability by Streptococcus thermophilus*</td>
<td>2) (210 ± 127 mean ±SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifidobacterium breve B632 and BR03*</td>
<td>-</td>
<td>reduced TNF-α levels*</td>
<td>3) (90 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediococcus. pentosaceus CECT 8330 and Bifidobacterium longum CECT 7894*</td>
<td>-</td>
<td>Increased IL-10 production*</td>
<td>4) (14 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus paracasei DSM 24733, Lactobacillus plantarum DSM 24730, Lactobacillus acidophilus DSM 24735, Lactobacillus delbrueckii subsp. bulgaricus DSM 24734, Bifidobacterium longum DSM 24736, Bifidobacterium breve DSM 24732, Bifidobacterium infantis DSM 24737, and Streptococcus thermophilus DSM</td>
<td>Normalization of intestinal integrity along with the reduced mucosal secretion of TNF-alpha and IFN-gamma in the animal models of Crohn's disease(^{94, 95})</td>
<td>5×10^9 CFU/day (21 days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus rhamnosus LCS-742 and Bifidobacterium infantis M63</td>
<td>10^7 CFU (30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium infantis, Lactobacillus</td>
<td>Reduced TNF-α^{96}</td>
<td>10^8 CFU/day (30 days)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*Probiotics with anti-inflammatory effects in various inflammation models, especially in the gastrointestinal tract.
Figure legends

Fig. 1. PRISMA flow diagram

Fig. 2. A) Risk of bias for each randomized controlled trial included in our study: low risk of bias (+), high risk of bias (-), unclear risk of bias (?). (B) Bar chart expressing the percent risk of bias for each included study.

Fig. 3. Evaluation of probiotic efficacy in the treatment of infantile colic
Figures

Literatures found through searching (n=167)
 duplicate Literatures (n=11)
 not accessible full text (n=30)
 literatures screened (n=126)

Did not meet the inclusion criteria (n=112)
 other types of literatures (e.g., review n=38)
 not clinical trial (n=23)
 the scales were not reported as mean±SD (n=12)
 congress papers (n=8)
 three or more groups were included (n=14)
 reporting was not based on the minutes per day (n=17)

papers with no clear data (n=4)

studies included in the meta analysis (n=10)

Fig. 1.
Fig. 2.
Fig. 3.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>probiotics</th>
<th>placebo</th>
<th>Std. Mean Difference</th>
<th>I²</th>
<th>Q</th>
<th>Random</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldessarini 2018</td>
<td>69.4</td>
<td>30.2</td>
<td>37</td>
<td>27</td>
<td>59.7</td>
<td>39.2</td>
<td>10.5%</td>
</tr>
<tr>
<td>Enza 2019</td>
<td>12.14</td>
<td>10.62</td>
<td>23</td>
<td>30</td>
<td>46.65</td>
<td>52.83</td>
<td>10.8%</td>
</tr>
<tr>
<td>Corasnikov 2018</td>
<td>142.86</td>
<td>86.6</td>
<td>32</td>
<td>44</td>
<td>169</td>
<td>72</td>
<td>11.0%</td>
</tr>
<tr>
<td>Kamlar 2014</td>
<td>28.8</td>
<td>8.7</td>
<td>25</td>
<td>20</td>
<td>53.48</td>
<td>10</td>
<td>9.5%</td>
</tr>
<tr>
<td>MI 2015</td>
<td>32.05</td>
<td>6.3</td>
<td>20</td>
<td>19</td>
<td>120.63</td>
<td>20.1</td>
<td>7.9%</td>
</tr>
<tr>
<td>Park 2015</td>
<td>70.36</td>
<td>15.15</td>
<td>22</td>
<td>15</td>
<td>138</td>
<td>108</td>
<td>16.1%</td>
</tr>
<tr>
<td>Scutari 2019</td>
<td>74.67</td>
<td>25.64</td>
<td>32</td>
<td>22</td>
<td>147.65</td>
<td>37.99</td>
<td>10.2%</td>
</tr>
<tr>
<td>Savino 2019</td>
<td>78.34</td>
<td>23.24</td>
<td>25</td>
<td>25</td>
<td>232.24</td>
<td>31</td>
<td>0.6%</td>
</tr>
<tr>
<td>Sung 2014</td>
<td>122.118</td>
<td>85</td>
<td>131</td>
<td>58</td>
<td>111</td>
<td>54.97</td>
<td>10.0%</td>
</tr>
<tr>
<td>Waseem Ashraf 2015</td>
<td>39.3</td>
<td>53.44</td>
<td>45</td>
<td>54</td>
<td>113.33</td>
<td>54.97</td>
<td>10.7%</td>
</tr>
</tbody>
</table>

Total (95% CI) 367 | 345 | 100.0% | -1.98 [-2.74, -1.22] |

Heterogeneity: Tau² = 1.24, Chi² = 160.63, df = 9 (P < 0.00001), I² = 94%
Test for overall effect: Z = 5.12 (P < 0.00001)