1. Fields S, Song OK. A novel genetic system to detect protein–protein interactions. Nature 1989;340:245–6.
3. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform 2017;18:851–69.
4. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev 2000;14:1027–47.
5. Lemos B, Meiklejohn CD, Hartl DL. Regulatory evolution across the protein interaction network. Nat Genet 2004;36:1059–60.
6. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002;415:141–7.
9. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020;577:706–10.
11. Luscombe NM, Austin SE, Berman HM, Thornton JM. An overview of the structures of protein-DNA complexes. Genome Biol 2000;1:REVIEWS001.
14. Riley TR, Slattery M, Abe N, Rastogi C, Liu D, Mann RS, et al. SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. In: Graba Y, Rezsohazy R, editors. Hox genes. New York: Humana Press, 2014:255–78.
17. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol 2015;33:831–8.
18. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. In: Proceedings of the IEEE 1998;86:2278–324.
19. Hassanzadeh HR, Wang MD. DeeperBind: enhancing prediction of sequence specificities of DNA binding proteins. PProceedings (IEEE Int Conf Bioinformatics Biomed) 2016;2016:178–83.
20. Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. arXiv:1611.05777 [Preprint] 2016;[cited 2021 Sep 2]. Available from:
https://doi.org/10.48550/arXiv.1611.05777.
24. Shrikumar A, Tian K, Avsec Ž, Shcherbina A, Banerjee A, Sharmin M, et al. Technical note on transcription factor motif discovery from importance scores (TF-MoDISco) version 0.5. 6.5. arXiv:1811.00416 [Preprint] 2018 [cited 2021 Sep 5]. Available from:
https://doi.org/10.48550/arXiv.1811.00416.
30. Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep 2020;31:107663.
32. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017); Long Beach (CA), USA.
34. Reed R, Maniatis T. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev 1988;2:1268–76.
35. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell 2019;176:535–48.
38. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–30.
43. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 2018;24:1248–59.
45. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: the all convolutional net. arXiv:1412.6806 2014; [cited 2021 Sep 10]. Available from:
https://doi.org/10.48550/arXiv.1412.6806.
46. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning; Sydney, Australia. PMLR 2017;70:3145–53.
47. Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning; Sydney, Australia. PMLR. 2017;70:3319–28.
48. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006;34(Database issue): D535–9.
49. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49(D1): D605–12.
50. Hwang S, Kim CY, Yang S, Kim E, Hart T, Marcotte EM, et al. HumanNet v2: human gene networks for disease research. Nucleic Acids Res 2019;47:D573–80.
51. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020;48:D498–503.
52. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw 2008;20:61–80.
53. Rhee S, Seo S, Kim S. Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-18); Stockholm (Sweden). 2018 Jul 13–19; IJCAI 2018;3527-34.
55. Lee S, Lim S, Lee T, Sung I, Kim S. Cancer subtype classification and modeling by pathway attention and propagation. Bioinformatics 2020;36:3818–24.
56. Ma T, Zhang A. Multi-view factorization autoencoder with network constraints for multi-omic integrative analysis. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine; 2018 Dec 3-6; IEEE BIBM 2018;702-7.
57. Ando RK, Zhang T. Learning on graph with Laplacian regularization. In: Schölkopf B, Platt J, Hofmann T, , editors. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference. 200719::25.
59. Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res 2019;47:D330–8.
60. Lipscomb CE. Medical subject headings (MeSH). Bull Med Library Assoc 2000;88:265–6.
63. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, Van Der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 2018;46:D260–6.
64. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006;34:D108–10.
65. Kolmykov S, Yevshin I, Kulyashov M, Sharipov R, Kondrakhin Y, Makeev VJ, et al. GTRD: an integrated view of transcription regulation. Nucleic Acids Res 2021;49:D104–11.
66. Irizarry RA. Interpretable convolution methods for learning genomic sequence motifs. bioRxiv [Preprint] 2018;[cited 2021 Sep 3]. Available from:
https://doi.org/10.1101/411934.
67. Kang M, Lee S, Lee D, Kim S. Learning cell-type-specific gene regulation mechanisms by multi-attention-based deep learning with regulatory latent space. Frontier Genet 2020;11:869.
68. Lanchantin J, Qi Y. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data. Bioinformatics 2020;36(Suppl_2): i659–67.