1. Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child 2015;100:1084–8.
2. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:e927–99.
3. Li G, Wang T, Gou Y, Zeng R, Liu D, Duan Y, et al. Value of C-reactive protein/albumin ratio in predicting intravenous immunoglobulin-resistant Kawasaki disease- a data from multiinstitutional study in China. Int Immunopharmacol 2020;89(Pt A): 107037.
5. Li G, Wang T, Li J, Chen P, Jia P, Zhao J, et al. Increased concentrations of growth differentiation factor-15 in children with Kawasaki disease. Clin Chim Acta 2020;507:264–70.
6. Duan Y, Li H, Luo D, Jiang J, Liu B, Li G. Serum IL-41 might be a biomarker for IVIG resistance and coronary artery lesions in Kawasaki disease. Int Immunopharmacol 2023;122:110600.
7. Egami K, Muta H, Ishii M, Suda K, Sugahara Y, Iemura M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr 2006;149:237–40.
8. Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 2006;113:2606–12.
13. Song R, Yao W, Li X. Efficacy of four scoring systems in predicting intravenous immunoglobulin resistance in children with Kawasaki disease in a children's hospital in Beijing, North China. J Pediatr 2017;184:120–4.
16. Talukder A, Ahammed B. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition 2020;78:110861.
19. Lu W, Zhao L, Wang S, Zhang H, Jiang K, Ji J, et al. Explainable and visualizable machine learning models to predict biochemical recurrence of prostate cancer. Clin Transl Oncol 2024;Apr 11 doi: 10.1007/s12094-024-03480-x.[Epub].
22. Zhou S. Sparse SVM for sufficient data reduction. IEEE Trans Pattern Anal Mach Intell 2022;44:5560–71.
24. Lorencin I, Anđelić N, Španjol J, Car Z. Using multi-layer perceptron with La placian edge detector for bladder cancer diagnosis. Artif Intell Med 2020;102:101746.
27. Wu X, Sun Y, Xu X, Steyerberg EW, Helmrich IRAR, Lecky F, et al. Mortality prediction in severe traumatic brain injury using traditional and machine learning algorithms. J Neurotrauma 2023;40:1366–75.
28. Wang R, Wang L, Zhang J, He M, Xu J. XGBoost machine learning algorism performed better than regression models in predicting mortality of moderate-to-severe traumatic brain injury. World Neurosurg 2022;163:e617–22.
30. Wang K, Tian J, Zheng C, Yang H, Ren J, Liu Y, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput Biol Med 2021;137:104813.
33. Yang S, Song R, Zhang J, Li X, Li C. Predictive tool for intravenous immunoglobulin resistance of Kawasaki disease in Beijing. Arch Dis Child 2019;104:262–7.