1. Darbre PD. The history of endocrine-disrupting chemicals. Curr Opin Endocr Metab Res 2019;7:26–33.
2. Monneret C. What is an endocrine disruptor? C R Biol 2017;340:403–5.
5. Ramakrishna M, Girigoswami A, Chakraborty S, Girigoswami K. Bisphenol A-An overview on its effect on health and environment. Biointerface Res Appl Chem 2021;12:105–19.
6. Yesildemir O, Akdevelioglu Y, Duyan CamurdanA, Cuhaci Cakir B, Erdemli Kose SB, Arca Cakir D, et al. Estimated exposure to bisphenol A in breastfed and breastfed plus formula-fed infants in Turkey: a comparison study. Drug Chem Toxicol 2022;Dec 26 1. –11. doi: 10.1080/01480545.2022.2160456. [Epub].
8. Alharbi OM, Khattab RA, Ali I. Health and environmental effects of persistent organic pollutants. J Mol Liq 2018;263:442–53.
9. DiVall SA. The influence of endocrine disruptors on growth and development of children. Curr Opin Endocr Metab Res 2013;20:50–5.
11. Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-disrupting chemicals and child health. Annu Rev Pharmacol Toxicol 2022;62:573–94.
13. Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: a review on the major concerns. Birth Defects Res C Embryo Today 2016;108:224–42.
15. Caserta D, Pegoraro S, Mallozzi M, Di Benedetto L, Colicino E, Lionetto L, et al. Maternal exposure to endocrine disruptors and placental transmission: a pilot study. Gynecol Endocrinol 2018;34:1001–4.
18. Gingrich J. The effects of endocrine disrupting chemicals on placental development and function [dissertation]. East Lansing (MI): Michigan State University,, 2020.
19. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986;327:1077–81.
21. Brown HL, Smith GN. Pregnancy complications, cardiovascular risk factors, and future heart disease. Obstet Gynecol 2020;47:487–95.
22. Eriksson JG. Developmental pathways and programming of diabetes: epidemiological aspects. J Endocrinol 2019;Apr 1 JOE-18-0680.R2. doi: 10.1530/JOE-18-0680. [Epub].
24. Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: a target for endocrine disruptors? Environ Int 2021;147:106311.
25. Kim S, Lee J, Park J, Kim HJ, Cho GJ, Kim GH, et al. Urinary phthalate metabolites over the first 15 months of life and risk assessment–CHECK cohort study. Sci Total Environ 2017;607:881–7.
27. Broe A, Pottegård A, Hallas J, Ahern TP, Lamont RF, Damkier P. Phthalate exposure from drugs during pregnancy and possible risk of preterm birth and small for gestational age. Eur J Obstet Gynecol Reprod Biol 2019;240:293–9.
29. Chen M, Zhu P, Xu B, Zhao R, Qiao S, Chen X, et al. Determination of nine environmental phenols in urine by ultrahigh-performance liquid chromatography–tandem mass spectrometry. J Anal Toxicol 2012;36:608–15.
30. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 2002;17:2839–41.
32. Liang J, Liu S, Liu T, Yang C, Wu Y, Jennifer Tan HJ, et al. Association of prenatal exposure to bisphenols and birth size in Zhuang ethnic newborns. Chemosphere 2020;252:126422.
34. Basak S, Srinivas V, Duttaroy AK. Bisphenol-A impairs cellular function and alters DNA methylation of stress pathway genes in first trimester trophoblast cells. Reprod Toxicol 2018;82:72–9.
35. Pergialiotis V, Kotrogianni P, Christopoulos-Timogiannakis E, Koutaki D, Daskalakis G, Papantoniou N. Bisphenol A and adverse pregnancy outcomes: a systematic review of the literature. J Matern Fetal Neonatal Med 2018;31:3320–7.
36. Mørck TJ, Sorda G, Bechi N, Rasmussen BS, Nielsen JB, Ietta F, et al. Placental transport and in vitro effects of Bisphenol A. Reprod Toxicol 2010;30:131–7.
38. Namat A, Xia W, Xiong C, Xu S, Wu C, Wang A, et al. Association of BPA exposure during pregnancy with risk of preterm birth and changes in gestational age: a meta-analysis and systematic review. Ecotoxicol Environ Saf 2021;220:112400.
42. Lee YM, Hong YC, Ha M, Kim Y, Park H, Kim HS, et al. Prenatal bisphenol-A exposure affects fetal length growth by maternal glutathione transferase polymorphisms, and neonatal exposure affects child volume growth by sex: from multiregional prospective birth cohort MOCEH study. Sci Total Environ 2018;612:1433–41.
43. Zbucka-Krętowska M, Łazarek U, Miltyk W, Sidorkiewicz I, Pierzyński P, Milewski R, et al. Simultaneous analysis of bisphenol A fractions in maternal and fetal compartments in early second trimester of pregnancy. J Perinat Med 2019;47:765–70.
44. Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting chemicals on placentation. Chemosphere 2019;231:326–36.
45. Hu CY, Li FL, Hua XG, Jiang W, Mao C, Zhang XJ. The association between prenatal bisphenol A exposure and birth weight: a meta-analysis. Reprod Toxicol 2018;79:21–31.
46. Zhong Q, Peng M, He J, Yang W, Huang F. Association of prenatal exposure to phenols and parabens with birth size: a systematic review and meta-analysis. Sci Total Environ 2020;703:134720.
47. Zhou Z, Lei Y, Wei W, Zhao Y, Jiang Y, Wang N, et al. Association between prenatal exposure to bisphenol a and birth outcomes: a systematic review with meta-analysis. Medicine (Baltimore) 2019;98:e17672.
54. Zhou B, Yang P, Deng YL, Zeng Q, Lu WQ, Mei SR. Prenatal exposure to bisphenol a and its analogues (bisphenol F and S) and ultrasound parameters of fetal growth. Chemosphere 2020;246:125805.
55. Zong T, Lai L, Hu J, Guo M, Li M, Zhang L, et al. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice. J Hazard Mater 2015;297:25–33.
56. Wittassek M, Angerer J, Kolossa-Gehring M, Schäfer SD, Klockenbusch W, Dobler L, et al. Fetal exposure to phthalates–a pilot study. Int J Hyg Environ Health 2009;212:492–8.
58. Minatoya M, Araki A, Miyashita C, Sasaki S, Goto Y, Nakajima T, et al. Prenatal di-2-ethylhexyl phthalate exposure and cord blood adipokine levels and birth size: the Hokkaido study on environment and children's health. Sci Total Environ 2017;579:606–11.
60. Gao H, Wang Yf, Huang K, Han Y, Zhu YD, Zhang QF, et al. Prenatal phthalate exposure in relation to gestational age and preterm birth in a prospective cohort study. Environ Res 2019;176:108530.
62. Chen CH, Jiang SS, Chang IS, Wen HJ, Sun CW, Wang SL. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. Environ Res 2018;162:261–70.
69. Choi YJ, Lee YA, Hong YC, Cho J, Lee KS, Shin CH, et al. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. Environ Int 2020;143:105929.
71. Zhong Q, Liu Hl, Fu H, Niu QS, Wu HB, Huang F. Prenatal exposure to phthalates with preterm birth and gestational age: a systematic review and meta-analysis. Chemosphere 2021;282:130991.
72. Wu Y, Wang J, Wei Y, Chen J, Kang L, Long C, et al. Maternal exposure to endocrine disrupting chemicals (EDCs) and preterm birth: a systematic review, meta-analysis, and metaregression analysis. Environ Pollut 2022;292(Pt A): 118264.
73. Santos S, Sol CM, van Zwol–Janssens C, Philips EM, Asimakopoulos AG, Martinez-Moral MP, et al. Maternal phthalate urine concentrations, fetal growth and adverse birth outcomes. A population-based prospective cohort study. Environ Int 2021;151:106443.
74. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health 2007;210:623–34.
77. Polańska K, Ligocka D, Sobala W, Hanke W. Effect of environmental phthalate exposure on pregnancy duration and birth outcomes. Int J Occup Med Environ Health 2016;29:683–97.
79. Vrachnis N, Loukas N, Vrachnis D, Antonakopoulos N, Christodoulaki C, Tsonis O, et al. Phthalates and fetal growth velocity: tracking down the suspected links. J Matern Fetal Neonatal Med 2022;35:4985–93.
80. Li J, Qian X, Zhou Y, Li Y, Xu S, Xia W, et al. Trimester-specific and sex-specific effects of prenatal exposure to di (2-ethylhexyl) phthalate on fetal growth, birth size, and early-childhood growth: a longitudinal prospective cohort study. Sci Total Environ 2021;777:146146.
82. Kim S, Cho YH, Lee I, Kim W, Won S, Ku JL, et al. Prenatal exposure to persistent organic pollutants and methylation of LINE-1 and imprinted genes in placenta: a CHECK cohort study. Environ Int 2018;119:398–406.
84. Frazier LM. Reproductive disorders associated with pesticide exposure. J Agromedicine 2007;12:27–37.
85. Pathak R, Mustafa M, Ahmed T, Ahmed RS, Tripathi A, Guleria K, et al. Intra uterine growth retardation: association with organochlorine pesticide residue levels and oxidative stress markers. Reprod Toxicol 2011;31:534–9.
86. Schoeters G, Den Hond E, Dhooge W, Van Larebeke N, Leijs M. Endocrine disruptors and abnormalities of pubertal development. Basic Clin Pharmacol Toxicol 2008;102:168–75.
87. Vizcaino E, Grimalt JO, Fernández-Somoano A, Tardon A. Transport of persistent organic pollutants across the human placenta. Environ Int 2014;65:107–15.
88. Grandjean P, Bellinger D, Bergman Å, Cordier S, Davey-Smith G, Eskenazi B, et al. The faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic Clin Pharmacol Toxicol 2008;102:73–5.
89. Barker DJ. In utero programming of chronic disease. Clin Sci (Lond) 1998;95:115–28.
90. Tang M, Yin S, Zhang J, Chen K, Jin M, Liu W. Prenatal exposure to polychlorinated biphenyl and umbilical cord hormones and birth outcomes in an island population. Environ Pollut 2018;237:581–91.
91. Hertz-Picciotto I, Charles MJ, James RA, Keller JA, Willman E, Teplin S. In utero polychlorinated biphenyl exposures in relation to fetal and early childhood growth. Epidemiology 2005;16:648–56.
92. Govarts E, Nieuwenhuijsen M, Schoeters G, Ballester F, Bloemen K, De Boer M, et al. Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlor odiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. Environ Health Perspect 2012;120:162–70.
93. Govarts E, Iszatt N, Trnovec T, de Cock M, Eggesbø M, Murinova LP, et al. Prenatal exposure to endocrine disrupting chemicals and risk of being born small for gestational age: pooled analysis of seven European birth cohorts. Environ Int 2018;115:267–78.
95. Kezio KL, Liu X, Cirillio PM, Kalantzi OI, Wang Y, Petreas MX, et al. Prenatal polychlorinated biphenyl exposure is associated with decreased gestational length but not birth weight: archived samples from the Child Health and Development Studies pregnancy cohort. Environ Healt 2012;11:49.
96. Lignell S, Aune M, Darnerud PO, Hanberg A, Larsson SC, Glynn A. Prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish cohort with background exposure: a cross-sectional study. Environ Healt 2013;12:44.
97. Sheinberg R, Siegel EL, Keidar R, Mandel D, Lubetzky R, Kohn E, et al. Associations between intrauterine exposure to polychlorinated biphenyls on neonatal ano-genital distance. Reprod Toxicol 2020;96:67–75.
101. Forhead AJ, Fowden AL. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol 2014;221:R87–103.
103. Zhao Y, Song Q, Ge W, Jin Y, Chen S, Zhao Y, et al. Associations between in utero exposure to polybrominated diphenyl ethers, pathophysiological state of fetal growth and placental DNA methylation changes. Environ Int 2019;133(Pt B): 105255.
104. Bernasconi S, Sartori C, Merli S, Lazzeroni P, Cesari S, Street M. Thyroid hormones in fetal development. In: Bona G, De Luca F, Monzani A, editors. Thyroid diseases in childhood: recent advances from basic science to clinical practice. Berlin: Springer, 2015:15-25.
107. Wang Y, Wang Q, Zhou L, Zeng Z, Zhao C, You L, et al. Metabolomics insights into the prenatal exposure effects of polybrominated diphenyl ethers on neonatal birth outcomes. Sci Total Environ 2022;836:155601.
108. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr 2004;23(6 Suppl): 588S–595S.
109. Visentin S, Grumolato F, Nardelli GB, Di Camillo B, Grisan E, Cosmi E. Early origins of adult disease: low birth weight and vascular remodeling. Atherosclerosis 2014;237:391–9.
111. Chen L, Wang C, Cui C, Ding G, Zhou Y, Jin J, et al. Prenatal exposure to polybrominated diphenyl ethers and birth outcomes. Environ Pollut 2015;206:32–7.
116. Workman CE, Becker AB, Azad MB, Moraes TJ, Mandhane PJ, Turvey SE, et al. Associations between concentrations of perfluoroalkyl substances in human plasma and maternal, infant, and home characteristics in Winnipeg, Canada. Environ Pollut 2019;249:758–66.
118. Gao X, Ni W, Zhu S, Wu Y, Cui Y, Ma J, et al. Per-and polyfluoroalkyl substances exposure during pregnancy and adverse pregnancy and birth outcomes: a systematic review and meta-analysis. Environ Res 2021;201:111632.
119. Du G, Hu J, Huang H, Qin Y, Han X, Wu D, et al. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. Environ Toxicol Chem 2013;32:353–60.
123. Ku MS, Pan WC, Huang YT, Hsieh WS, Hsu YH, Chen PC, et al. Associations between prenatal exposure to perfluoroalkyl substances, hypomethylation of MEST imprinted gene and birth outcomes. Environ Pol 2022;304:119183.
125. Migeot V, Albouy-Llaty M, Carles C, Limousi F, Strezlec S, Dupuis A, et al. Drinking-water exposure to a mixture of nitrate and low-dose atrazine metabolites and small-forgestational age (SGA) babies: a historic cohort study. Environ Res 2013;122:58–64.
126. Gemmill A, Gunier RB, Bradman A, Eskenazi B, Harley KG. Residential proximity to methyl bromide use and birth outcomes in an agricultural population in California. Environ Health Perspec 2013;121737–43.
127. Béranger R, Hardy EM, Binter AC, Charles MA, Zaros C, Appenzeller BM, et al. Multiple pesticides in mothers' hair samples and children's measurements at birth: results from the French national birth cohort (ELFE). Int J Hyg Environ Health 2020;223:22–33.
131. Hervé D, Costet N, Kadhel P, Rouget F, Monfort C, Thomé JP, et al. Prenatal exposure to chlordecone, gestational weight gain, and birth weightin a Guadeloupean birth cohort. Environ Res 2016;151:436–44.
137. Yang C, Fang J, Sun X, Zhang W, Li J, Chen X, et al. Prenatal exposure to organochlorine pesticides and infant growth: a longitudinal study. Environ Int 2021;148:106374.
138. Cabrera-Rodríguez R, Luzardo OP, Almeida-González M, Boada LD, Zumbado M, Acosta-Dacal A, et al. Association between prenatal exposure to multiple persistent organic pollutants (POPs) and growth indicators in newborns. Environ Res 2019;171:285–92.
139. Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. Environ Res 2022;203:111890.
144. Jensen TK, Mustieles V, Bleses D, Frederiksen H, Trecca F, Schoeters G, et al. Prenatal bisphenol A exposure is associated with language development but not with ADHD-related behavior in toddlers from the Odense Child Cohort. Environ Res 2019;170:398–405.
154. Qian X, Li J, Xu S, Wan Y, Li Y, Jiang Y, et al. Prenatal exposure to phthalates and neurocognitive development in children at two years of age. Environ Int 2019;131:105023.
155. Rochester JR, Bolden AL, Kwiatkowski CF. Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis. Environ Int 2018;114:343–56.
157. Casas M, Forns J, Martínez D, Avella-García C, Valvi D, Ballesteros-Gómez A, et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environ Res 2015;142:671–9.
160. Pan R, Wang C, Shi R, Zhang Y, Wang Y, Cai C, et al. Prenatal bisphenol A exposure and early childhood neurodevelopment in Shandong, China. Int J Hyg Environ Health 2019;222:896–902.
161. Nesan D, Kurrasch DM. Gestational exposure to common endocrine disrupting chemicals and their impact on neurodevelopment and behavior. Annu Rev Physiol 2020;82:177–202.
162. Liu J, Martin LJ, Dinu I, Field CJ, Dewey D, Martin JW. Interaction of prenatal bisphenols, maternal nutrients, and toxic metal exposures on neurodevelopment of 2-year-olds in the APrON cohort. Environ Int 2021;155:106601.
164. Lee DW, Kim MS, Lim YH, Lee N, Hong YC. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and neurodevelopmental outcomes: a systematic review and metaanalysis. Environmental Res 2018;167:558–66.
166. Zhang Q, Chen XZ, Huang X, Wang M, Wu J. The association between prenatal exposure to phthalates and cognition and neurobehavior of children-evidence from birth cohorts. Neurotoxicology 2019;73:199–212.
167. Praveena SM, Munisvaradass R, Masiran R, Rajendran RK, Lin CC, Kumar S. Phthalates exposure and attention-deficit/hyperactivity disorder in children: a systematic review of epidemiological literature. Environ Sci Pollut Res 2020;27:44757–70.
169. Jankowska A, Polańska K, Koch HM, Pälmke C, Waszkowska M, Stańczak A, et al. Phthalate exposure and neurodevelopmental outcomes in early school age children from Poland. Environ Res 2019;179(Pt B): 108829.
170. Won EK, Kim Y, Ha M, Burm E, Kim YS, Lim H, et al. Association of current phthalate exposure with neurobehavioral development in a national sample. Int J Hyg Environ Health 2016;219:364–71.
172. Téllez-Rojo MM, Cantoral A, Cantonwine DE, Schnaas L, Peterson K, Hu H, et al. Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Sci Total Environ 2013;461:386–90.
174. Palanza P, Paterlini S, Brambilla MM, Ramundo G, Caviola G, Gioiosa L, et al. Sex-biased impact of endocrine disrupting chemicals on behavioral development and vulnerability to disease: of mice and children. Neurosci Biobehav Rev 2021;121:29–46.
175. Ponsonby AL, Symeonides C, Saffery R, Mueller JF, O’Hely M, Sly PD, et al. Prenatal phthalate exposure, oxidative stress-related genetic vulnerability and early life neurodevelopment: a birth cohort study. Neurotoxicology 2020;80:20–8.
177. Jankowska A, Polańska K, Hanke W, Wesołowska E, Ligocka D, Waszkowska M, et al. Prenatal and early postnatal phthalate exposure and child neurodevelopment at age of 7 years–Polish Mother and Child Cohort. Environ Res 2019;177:108626.
178. Chen HK, Wang SL, Chang YH, Sun CW, Wu MT, Chen ML, et al. Associations between maternal phthalate exposure and neonatal neurobehaviors: the Taiwan maternal and infant cohort study (TMICS). Environ Pollut 2023;319:120956.
179. Okoro HK, Ige JO, Iyiola OA, Pandey S, Lawal IA, Zvinowanda C, et al. Comprehensive reviews on adverse health effects of human exposure to endocrine-disrupting chemicals. Fresenius Environ Bull 2017;26:4623–36.
182. Caspersen IH, Aase H, Biele G, Brantsæter AL, Haugen M, Kvalem HE, et al. The influence of maternal dietary exposure to dioxins and PCBs during pregnancy on ADHD symptoms and cognitive functions in Norwegian preschool children. Environ Int 2016;94:649–60.
183. Plusquellec P, Muckle G, Dewailly E, Ayotte P, Bégin G, Desrosiers C, et al. The relation of environmental contaminants exposure to behavioral indicators in Inuit preschoolers in Arctic Quebec. Neurotoxicology 2010;31:17–25.
186. Ruel MVM, Bos AF, Soechitram SD, Meijer L, Sauer PJJ, Berghuis SA. Prenatal exposure to organohalogen compounds and children’s mental and motor development at 18 and 30 months of age. Neurotoxicology 2019;72:6–14.
191. De Cock M, Maas YG, Van De Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatrica 2012;101:811–8.
201. Ding G, Yu J, Cui C, Chen L, Gao Y, Wang C, et al. Association between prenatal exposure to polybrominated diphenyl ethers and young children's neurodevelopment in China. Environ Res 2015;142:104–11.
206. Chao HR, Tsou TC, Huang HL, Chang-Chien GP. Levels of breast milk PBDEs from southern Taiwan and their potential impact on neurodevelopment. Pediatr Res 2011;70:596–600.
209. Ji H, Liang H, Wang Z, Miao M, Wang X, Zhang X, et al. Associations of prenatal exposures to low levels of Polybrominated Diphenyl Ether (PBDE) with thyroid hormones in cord plasma and neurobehavioral development in children at 2 and 4 years. Environ Int 2019;131:105010.
210. Kim S, Eom S, Kim HJ, Lee JJ, Choi G, Choi S, et al. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2 years of age-CHECK cohort study. Sci Total Environ 2018;624:377–84.
211. Lenters V, Iszatt N, Forns J, echová E, Ko an A, Legler J, et al. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: a multi-pollutant analysis of a Norwegian birth cohort. Environ Int 2019;125:33–42.
212. Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, et al. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai MaternalChild Pairs Cohort. Environ Int 2023;173:107850.
215. Yao Q, Vinturache A, Lei X, Wang Z, Pan C, Shi R, et al. Prenatal exposure to per-and polyfluoroalkyl substances, fetal thyroid hormones, and infant neurodevelopment. Environ Res 2022;206:112561.
216. Ojo AF, Peng C, Ng JC. Assessing the human health risks of per-and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J Hazard Mater 2021;407:124863.
217. Høyer BB, Ramlau-Hansen CH, Obel C, Pedersen HS, Hernik A, Ogniev V, et al. Pregnancy serum concentrations of perfluorinated alkyl substances and offspring behaviour and motor development at age 5–9 years–a prospective study. Environ Health 2015;14:2.
225. Xie Z, Tan J, Fang G, Ji H, Miao M, Tian Y, et al. Associations between prenatal exposure to perfluoroalkyl substances and neurobehavioral development in early childhood: a prospective cohort study. Ecotoxicol Environ Saf 2022;241:113818.
226. Saravi SSS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: a review. Life Sci 2016;145:255–64.
227. Fenster L, Eskenazi B, Anderson M, Bradman A, Hubbard A, Barr DB. In utero exposure to DDT and performance on the Brazelton neonatal behavioral assessment scale. Neurotoxicology 2007;28:471–7.
229. Etiemble J, Cordier S. Pesticides and neurodevelopment in children. Environ Risques Sante 2022;21:51–65.
234. Yamazaki K, Itoh S, Araki A, Miyashita C, Minatoya M, Ikeno T, et al. Associations between prenatal exposure to organochlorine pesticides and thyroid hormone levels in mothers and infants: The Hokkaido study on environment and children's health. Environ Res 2020;189:109840.
237. Nishijo M, Anh NTN, Maruzeni S, Nakagawa H, Van Luong H, Anh TH, et al. Dioxin exposure in breast milk and infant neurodevelopment in Vietnam. Occup Environ Med 2013;70:656–62.
238. The TP, Ngoc TP, Van TH, Nishijo M, Ngoc NT, Thi HV, et al. Effects of perinatal dioxin exposure on learning abilities of 8-year-old children in Vietnam. Int J Hyg Environ Health 2020;223:132–41.
239. Pham TT, Nishijo M, Nguyen ATN, Tran NN, Van Hoang L, Tran AH, et al. Perinatal dioxin exposure and the neurodevelopment of Vietnamese toddlers at 1 year of age. Sci Total Environ 2015;536:575–81.