1. Maes C, Kronenberg HM. Bone development and remodeling. In: Robertson RP, editor. DeGroot’s endocrinology. 8th ed. Philadelphia (PA): Elsevier Inc, 2023:869–88.
2. Maes C, Kronenberg HM. Postnatal bone growth: growth plate biology, bone formation, and remodeling. In: Glorieux FH, Pettifor JM, Jüppner H, editors. Pediatric bone. 2nd ed. San Diego (CA): Elsevier Inc, 2012:55–82.
3. Root AW. Disorders of mineral metabolism: normal homeostasis. In: Sperling MA, Majzoub JA, Menon RK, Stratakis CA, editors. Sperling pediatric endocrinology. 5th ed. Philadelphia (PA): Elsevier Inc, 2021:220–78.
7. Lui JC, Jee YH, Garrison P, Iben JR, Yue S, Ad M, et al. Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions. PLoS Biol 2018;16:e2005263.
10. Nilsson O, Baron J. Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends Endocrinol Metab 2004;15:370–4.
12. Kalirai H, Phillip M, Savendahl L, Wit JM. The Fifth European Growth Plate Working Group Symposium. J Pediatr Endocrinol Metab 2006;19:183–90.
13. Schrier L, Ferns SP, Barnes KM, Emons JA, Nilsson O, et al. Depletion of resting zone chondrocytes during growth plate senescence. J Endocrinol 2006;189:27–36.
15. Lui JC. Home for a rest: stem cell niche of the postnatal growth plate. J Endocrinol 2020;246:R1–11.
16. Stevens DG, Boyer MI, Bowen CV. Transplantation of epiphyseal plate allografts between animals of different ages. J Pediatr Orthop 1999;19:398–403.
17. Herrera E, Samper E, Martín-Caballero J, Flores JM, Lee HW, Blasco MA. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 1999;18:2950–60.
18. Nilsson O, Mitchum RD, Schrier L, Ferns SP, Barnes KM, Troendle JF, et al. Growth plate senescence is associated with loss of DNA methylation. J Endocrinol 2005;186:241–9.
19. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16:2813–28.
20. Karimian E, Chagin AS, Sävendahl L. Genetic regulation of the growth plate. Front Endocrinol (Lausanne) 2012;2:113.
21. Nilsson O, Parker EA, Hegde A, Chau M, Barnes KM, Baron J. Gradients in bone morphogenetic protein-related gene expression across the growth plate. J Endocrinol 2007;193:75–84.
22. Pizette S, Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 2000;219:237–49.
23. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001;128:4523–34.
24. Hirai T, Chagin AS, Kobayashi T, Mackem S, Kronenberg HM. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life. Proc Natl Acad Sci U S A 2011;108:191–6.
27. Kindblom JM, Nilsson O, Hurme T, Ohlsson C, Sävendahl L. Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development. J Endocrinol 2002;174:R1–6.
28. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002;3:439–49.
29. Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone 2007;40:577–86.
33. Leung K, Johannsson G, Leong GM, Ho KY. Estrogen regulation of growth hormone action. Endocr Rev 2004;25:693–721.
34. Chagin AS, Sävendahl L. Oestrogen receptors and linear bone growth. Acta Paediatr 2007;96:1275–9.
38. Börjesson AE, Lagerquist MK, Liu C, Shao R, Windahl SH, Karlsson C, et al. The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J Bone Miner Res 2010;25:2414–24.
40. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, et al. Sex steroid actions in male bone. Endocr Rev 2014;35:906–60.
41. Nilsson O, Chrysis D, Pajulo O, Boman A, Holst M, Rubinstein J, et al. Localization of estrogen receptors-alpha and -beta and androgen receptor in the human growth plate at different pubertal stages. J Endocrinol 2003;177:319–26.
42. Chrysis D, Nilsson O, Ritzen EM, Sävendahl L. Apoptosis is developmentally regulated in rat growth plate. Endocrine 2002;18:271–8.
43. Emons J, Chagin AS, Hultenby K, Zhivotovsky B, Wit JM, Karperien M, et al. Epiphyseal fusion in the human growth plate does not involve classical apoptosis. Pediatr Res 2009;66:654–9.
44. Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, et al. Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev 2008;22:2645–50.
45. Shapiro IM, Adams CS, Freeman T, Srinivas V. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Res C Embryo Today 2005;75:330–9.
47. Stewart AJ, Houston B, Farquharson C. Elevated expression of hypoxia inducible factor-2alpha in terminally differentiating growth plate chondrocytes. J Cell Physiol 2006;206:435–40.
48. cramer T, Schipani E, Johnson RS, Swoboda B, Pfander D. Expression of VEGF isoforms by epiphyseal chondrocytes during low-oxygen tension is HIF-1 alpha dependent. Osteoarthrit Cart 2004;12:433–9.
49. Lin C, McGough R, Aswad B, Block JA, Terek R. Hypoxia induces HIF-1 alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res 2004;22:1175–81.
50. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.
51. Noble BS. The osteocyte lineage. Arch Biochem Biophys 2008;473:106–11.
56. Yanovski JA, Rose SR, Municchi G, Pescovitz OH, Hill SC, Cassorla FG, et al. Treatment with a luteinizing hormone-releasing hormone agonist in adolescents with short stature. N Engl J Med 2003;348:908–17.
59. Ichiki T, Jinno A, Tsuji Y. Natriuretic peptide-based novel therapeutics: long journeys of drug developments optimized for disease states. Biology (Basel) 2022;11:859–73.