1. Park HW, Chung S. Body composition and obesity in Korean adolescents and its impact on diabetes mellitus. Korean J Obes 2013;22:137–144.
3. Hwang SW, Kim DH, Kim HS. Prevalence of the nonalcoholic fatty liver disease in obese children. Korean J Pediatr 2005;48:13–20.
4. Nho HN, Kim CR, Uhm JH, Kim JT, Jin SM, Seo JY, et al. The prevalence of obesity and metabolic abnormalities in Korean pediatric population. Korean J Pediatr Gastroenterol Nutr 2009;12:207–214.
5. Yoo J, Lee S, Kim K, Yoo S, Sung E, Yim J. Relationship between insulin resistance and serum alanine aminotransferase as a surrogate of NAFLD (nonalcoholic fatty liver disease) in obese Korean children. Diabetes Res Clin Pract 2008;81:321–326.
6. Park HS, Han JH, Choi KM, Kim SM. Relation between elevated serum alanine aminotransferase and metabolic syndrome in Korean adolescents. Am J Clin Nutr 2005;82:1046–1051.
8. Ministry of Health & Welfare. Korea Centers for Disease Control and Prevention. Korea Health Statistics 2010: The fifth Korea National Health and Nutrition Examination Survey (KNHANES V-5). Cheongwon: Ministry of Health & Welfare, Korea Centers for Disease Control and Prevention, 2011.
9. Eknoyan G. Adolphe Quetelet (1796-1874): the average man and indices of obesity. Nephrol Dial Transplant 2008;23:47–51.
10. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004;27:1487–1495.
11. Burns CJ, Boswell JM, Olsen GW. Liver enzyme activity and body mass index. J Occup Environ Med 1996;38:1248–1252.
12. Robinson D, Whitehead TP. Effect of body mass and other factors on serum liver enzyme levels in men attending for well population screening. Ann Clin Biochem 1989;26(Pt 5): 393–400.
14. Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 2013;52:165–174.
15. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010;11:11–18.
16. Festi D, Colecchia A, Sacco T, Bondi M, Roda E, Marchesini G. Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obes Rev 2004;5:27–42.
18. Brann LS. Classifying preadolescent boys based on their weight status and percent body fat produces different groups. J Am Diet Assoc 2008;108:1018–1022.
19. Choi JW. Association between elevated serum hepatic enzyme activity and total body fat in obese humans. Ann Clin Lab Sci 2003;33:257–264.
20. Helba M, Binkovitz LA. Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol 2009;39:647–656.
21. Perlemuter G, Naveau S, Belle-Croix F, Buffet C, Agostini H, Laromiguière M, et al. Independent and opposite associations of trunk fat and leg fat with liver enzyme levels. Liver Int 2008;28:1381–1388.
22. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001;285:2486–2497.
23. Lin YC, Chang PF, Yeh SJ, Liu K, Chen HC. Risk factors for liver steatosis in obese children and adolescents. Pediatr Neonatol 2010;51:149–154.
25. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, et al. The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab 2010;95:1777–1785.
26. Hsieh SD, Yoshinaga H, Muto T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int J Obes Relat Metab Disord 2003;27:610–616.
27. Savva SC, Tornaritis M, Savva ME, Kourides Y, Panagi A, Silikiotou N, et al. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 2000;24:1453–1458.
28. Weili Y, He B, Yao H, Dai J, Cui J, Ge D, et al. Waist-to-height ratio is an accurate and easier index for evaluating obesity in children and adolescents. Obesity (Silver Spring) 2007;15:748–752.
29. Lee KK, Park HS, Yum KS. Cut-off values of visceral fat area and waist-to-height ratio: diagnostic criteria for obesity-related disorders in Korean children and adolescents. Yonsei Med J 2012;53:99–105.
30. Olynyk JK, Knuiman MW, Divitini ML, Davis TM, Beilby J, Hung J. Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population. Am J Gastroenterol 2009;104:1715–1722.
31. Aigner E, Hinz C, Steiner K, Rossmann B, Pfleger J, Hohla F, et al. Iron stores, liver transaminase levels and metabolic risk in healthy teenagers. Eur J Clin Invest 2010;40:155–163.
32. Grotti Clemente AP, Molin Netto BD, Ganen Ad, Tock L, Arisa Caranti D, de Mello MT, et al. Cut-off values of visceral adiposity to predict NAFLD in Brazilian obese adolescents. J Nutr Metab 2013;2013:724781
33. Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. Gastroenterology 2002;122:1649–1657.
34. Deutsch M, Mueller WH, Malina RM. Androgyny in fat patterning is associated with obesity in adolescents and young adults. Ann Hum Biol 1985;12:275–286.